Warm forming of magnesium alloys has attracted much attention due to the very poor formability of Mg alloys at room temperature. In the present paper, the warm deep drawing of magnesium alloy AZ31 (3 wt.% Al, 1 wt.% Zn) sheets was studied by both the experimental approach and the finite element analysis. The results indicated that the formability of the AZ31 sheets could be improved significantly at elevated temperatures. Sound cups could be formed at 150 °C with the highest punch speed of 6 mm/min, while when the forming temperature was increased up to 250 °C, sound cups could be drawn with the highest punch speed of 120 mm/min. Finite element analyses were performed to investigate the effects of the process parameters on the drawability of rectangular cups and to predict the formation of the process defects. The reasonable agreement between the numerical simulation results and experimental data validated the accuracy of the finite element analysis.

Numerical simulation on warm deep drawing of magnesium alloy AZ31 sheets

PALUMBO, Gianfranco;SORGENTE, Donato;TRICARICO, Luigi
2009-01-01

Abstract

Warm forming of magnesium alloys has attracted much attention due to the very poor formability of Mg alloys at room temperature. In the present paper, the warm deep drawing of magnesium alloy AZ31 (3 wt.% Al, 1 wt.% Zn) sheets was studied by both the experimental approach and the finite element analysis. The results indicated that the formability of the AZ31 sheets could be improved significantly at elevated temperatures. Sound cups could be formed at 150 °C with the highest punch speed of 6 mm/min, while when the forming temperature was increased up to 250 °C, sound cups could be drawn with the highest punch speed of 120 mm/min. Finite element analyses were performed to investigate the effects of the process parameters on the drawability of rectangular cups and to predict the formation of the process defects. The reasonable agreement between the numerical simulation results and experimental data validated the accuracy of the finite element analysis.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11589/456
Citazioni
  • Scopus 25
  • ???jsp.display-item.citation.isi??? 17
social impact