In this paper we study semiclassical states for the problem where f(u) is a superlinear nonlinear term. Under our hypotheses on f a Lyapunov-Schmidt reduction is not possible. We use variational methods to prove the existence of spikes around saddle points of the potential V(x).

Semi-classical states for the Nonlinear Schrödinger Equation on saddle points of the potential via variational methods / D'Avenia, Pietro; Pomponio, Alessio; Ruiz, David. - In: JOURNAL OF FUNCTIONAL ANALYSIS. - ISSN 0022-1236. - STAMPA. - 262:10(2012), pp. 4600-4633. [10.1016/j.jfa.2012.03.009]

Semi-classical states for the Nonlinear Schrödinger Equation on saddle points of the potential via variational methods

D'AVENIA, Pietro;POMPONIO, Alessio;
2012-01-01

Abstract

In this paper we study semiclassical states for the problem where f(u) is a superlinear nonlinear term. Under our hypotheses on f a Lyapunov-Schmidt reduction is not possible. We use variational methods to prove the existence of spikes around saddle points of the potential V(x).
2012
http://www.sciencedirect.com/science/article/pii/S0022123612001103
Semi-classical states for the Nonlinear Schrödinger Equation on saddle points of the potential via variational methods / D'Avenia, Pietro; Pomponio, Alessio; Ruiz, David. - In: JOURNAL OF FUNCTIONAL ANALYSIS. - ISSN 0022-1236. - STAMPA. - 262:10(2012), pp. 4600-4633. [10.1016/j.jfa.2012.03.009]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11589/51915
Citazioni
  • Scopus 35
  • ???jsp.display-item.citation.isi??? 34
social impact