This paper concerns the seismic response of structures isolated at the base by means of High Damping Rubber Bearings (HDRB). The analysis is performed by using a stochastic approach, and a Gaussian zero mean filtered non-stationary stochastic process is used in order to model the seismic acceleration acting at the base of the structure. More precisely, the generalized Kanai-Tajimi model is adopted to describe the non-stationary amplitude and frequency characteristics of the seismic motion. The hysteretic differential Bouc-Wen model (BWM) is adopted in order to take into account the non-linear constitutive behaviour both of the base isolation device and of the structure. Moreover, the stochastic linearization method in the time domain is adopted to estimate the statistical moments of the non-linear system response in the state space. The non-linear differential equation of the response covariance matrix is then solved by using an iterative procedure which updates the coefficients of the equivalent linear system at each step and searches for the solution of the response covariance matrix equation. After the system response variance is estimated, a sensitivity analysis is carried out. The final aim of the research is to assess the real capacity of base isolation devices in order to protect the structures from seismic actions, by avoiding a non-linear response, with associated large plastic displacements and, therefore, by limiting related damage phenomena in structural and non-structural elements. In order to attain this objective the stochastic response of a non-linear n-dof shear-type base-isolated building is analysed; the constitutive law both of the structure and of the base devices is described, as previously reported, by adopting the BWM and by using appropriate parameters for this model, able to suitably characterize an ordinary building and the base isolators considered in the study. The protection level offered to the structure by the base isolators is then assessed by evaluating the reduction both of the displacement response and the hysteretic dissipated energy

Efficiency of base isolation systems in structural seismic protection and energetic assessment / Marano, G. C.; Greco, R.. - In: EARTHQUAKE ENGINEERING & STRUCTURAL DYNAMICS. - ISSN 0098-8847. - STAMPA. - 32:10(2003), pp. 1505-1531. [10.1002/eqe.286]

Efficiency of base isolation systems in structural seismic protection and energetic assessment

Marano, G. C.;Greco, R.
2003-01-01

Abstract

This paper concerns the seismic response of structures isolated at the base by means of High Damping Rubber Bearings (HDRB). The analysis is performed by using a stochastic approach, and a Gaussian zero mean filtered non-stationary stochastic process is used in order to model the seismic acceleration acting at the base of the structure. More precisely, the generalized Kanai-Tajimi model is adopted to describe the non-stationary amplitude and frequency characteristics of the seismic motion. The hysteretic differential Bouc-Wen model (BWM) is adopted in order to take into account the non-linear constitutive behaviour both of the base isolation device and of the structure. Moreover, the stochastic linearization method in the time domain is adopted to estimate the statistical moments of the non-linear system response in the state space. The non-linear differential equation of the response covariance matrix is then solved by using an iterative procedure which updates the coefficients of the equivalent linear system at each step and searches for the solution of the response covariance matrix equation. After the system response variance is estimated, a sensitivity analysis is carried out. The final aim of the research is to assess the real capacity of base isolation devices in order to protect the structures from seismic actions, by avoiding a non-linear response, with associated large plastic displacements and, therefore, by limiting related damage phenomena in structural and non-structural elements. In order to attain this objective the stochastic response of a non-linear n-dof shear-type base-isolated building is analysed; the constitutive law both of the structure and of the base devices is described, as previously reported, by adopting the BWM and by using appropriate parameters for this model, able to suitably characterize an ordinary building and the base isolators considered in the study. The protection level offered to the structure by the base isolators is then assessed by evaluating the reduction both of the displacement response and the hysteretic dissipated energy
2003
Efficiency of base isolation systems in structural seismic protection and energetic assessment / Marano, G. C.; Greco, R.. - In: EARTHQUAKE ENGINEERING & STRUCTURAL DYNAMICS. - ISSN 0098-8847. - STAMPA. - 32:10(2003), pp. 1505-1531. [10.1002/eqe.286]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11589/5879
Citazioni
  • Scopus 44
  • ???jsp.display-item.citation.isi??? 33
social impact