An innovative wireless monitoring system for measuring greenhouse climatic parameters was developed to overcome the problems related to wires cabling such as presence of a dense net of wires hampering the cultivation practices, wires subjected to high temperature and relative humidity, rodents that can damage wires. The system exploits battery-powered environmental sensors, such as air temperature and relative humidity sensors, wind speed and direction, and solar radiation sensors, integrated in the contest of an 802.15.4-based wireless sensors network. Besides, a fruit diameter measurement sensor was integrated into the system. This approach guarantees flexibilityease of deployment and low power consumption. Data collected from the greenhouse are then sent to a remote server via a general packet radio service link. The proposed solution has been implemented in a real environment. The test of the communication system showed that 0.3% of the sent data packed were lost; the climatic parameters measured with the wireless system were compared with data collected by the wired system showing a mean value of the absolute difference equal to 0.6°C for the value of the greenhouse air temperature. The wireless climate monitoring system showed a good reliability, while the sensor node batteries showed a lifetime of 530 days.
A wireless telecommunications network for real-time monitoring of greenhouse microclimate / Vox, Giuliano; Losito, P; Valente, F; Consoletti, R; SCARASCIA MUGNOZZA, Giacomo; Schettini, Evelia; Marzocca, C; Corsi, F.. - In: JOURNAL OF AGRICULTURAL ENGINEERING. - ISSN 2239-6268. - STAMPA. - 45:2(2014), pp. 70-79. [10.4081/jae.2014.237]
A wireless telecommunications network for real-time monitoring of greenhouse microclimate
SCARASCIA MUGNOZZA, Giacomo;Marzocca C;
2014-01-01
Abstract
An innovative wireless monitoring system for measuring greenhouse climatic parameters was developed to overcome the problems related to wires cabling such as presence of a dense net of wires hampering the cultivation practices, wires subjected to high temperature and relative humidity, rodents that can damage wires. The system exploits battery-powered environmental sensors, such as air temperature and relative humidity sensors, wind speed and direction, and solar radiation sensors, integrated in the contest of an 802.15.4-based wireless sensors network. Besides, a fruit diameter measurement sensor was integrated into the system. This approach guarantees flexibilityease of deployment and low power consumption. Data collected from the greenhouse are then sent to a remote server via a general packet radio service link. The proposed solution has been implemented in a real environment. The test of the communication system showed that 0.3% of the sent data packed were lost; the climatic parameters measured with the wireless system were compared with data collected by the wired system showing a mean value of the absolute difference equal to 0.6°C for the value of the greenhouse air temperature. The wireless climate monitoring system showed a good reliability, while the sensor node batteries showed a lifetime of 530 days.File | Dimensione | Formato | |
---|---|---|---|
vox_et_al.pdf
accesso aperto
Tipologia:
Versione editoriale
Licenza:
Creative commons
Dimensione
1.32 MB
Formato
Adobe PDF
|
1.32 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.