We study the following problem where is a bounded domain of , , , and and we obtain existence and nonexistence results, depending on the value of the parameters and . where ohm is a bounded domain of RN, N = 4, 2* = 2N/( N - 2),.. R and = 0 and we obtain existence and nonexistence results, depending on the value of the parameters lambda and mu.

Positive ground states for a system of Schrödinger equations with critically growing nonlinearities / D'Avenia, Pietro; Mederski, Jarosław. - In: CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS. - ISSN 0944-2669. - STAMPA. - 53:3-4(2015), pp. 879-900. [10.1007/s00526-014-0770-5]

Positive ground states for a system of Schrödinger equations with critically growing nonlinearities

D'AVENIA, Pietro;
2015-01-01

Abstract

We study the following problem where is a bounded domain of , , , and and we obtain existence and nonexistence results, depending on the value of the parameters and . where ohm is a bounded domain of RN, N = 4, 2* = 2N/( N - 2),.. R and = 0 and we obtain existence and nonexistence results, depending on the value of the parameters lambda and mu.
2015
Positive ground states for a system of Schrödinger equations with critically growing nonlinearities / D'Avenia, Pietro; Mederski, Jarosław. - In: CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS. - ISSN 0944-2669. - STAMPA. - 53:3-4(2015), pp. 879-900. [10.1007/s00526-014-0770-5]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11589/6917
Citazioni
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 7
social impact