This paper presents a dynamic electromechanical model for an actuator system based on a Dielectric Electro-Active Polymer (DEAP) memb rane biased with a linear spring. The motion is generated by the deformation of the membrane caused by the electrostatic compressive force between two compliant electrodes applied on the surface of the polymer. A mass and a linear spring are used to pre-load the membrane, allowing stroke in the out-of-plane direction. The development of mathematical models which accurately describe the nonlinear system dynamics is a fundamental step in order to design model-based, high-precision position control algorithms. In particular, knowledge of the nonlinear electrical dynamics of the actuator driving circuit can be exploited during the control system design in order to achieve desirable features, such as self-sensing or control energy minimization. This work proposes an electromechanical physical model of the DEAP actuator system. By means of numerous experiments, it is shown that the model can be used to predict the current by measuring deformation and voltage (electrical dynamics), as well as predicting deformation and current by measuring the voltage (electromechanical dynamics).

Dynamic electromechanical modeling of a spring-biased dielectric electroactive polymer actuator system / Rizzello, Gianluca; Hodgins, Micah; Naso, David; York, Alexer; Seelecke, Stefan. - STAMPA. - (2014). (Intervento presentato al convegno ASME 2014 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, SMASIS 2014 tenutosi a Newport, RI nel September 8-10, 2014) [10.1115/SMASIS2014-7617].

Dynamic electromechanical modeling of a spring-biased dielectric electroactive polymer actuator system

Rizzello, Gianluca;Naso, David;
2014-01-01

Abstract

This paper presents a dynamic electromechanical model for an actuator system based on a Dielectric Electro-Active Polymer (DEAP) memb rane biased with a linear spring. The motion is generated by the deformation of the membrane caused by the electrostatic compressive force between two compliant electrodes applied on the surface of the polymer. A mass and a linear spring are used to pre-load the membrane, allowing stroke in the out-of-plane direction. The development of mathematical models which accurately describe the nonlinear system dynamics is a fundamental step in order to design model-based, high-precision position control algorithms. In particular, knowledge of the nonlinear electrical dynamics of the actuator driving circuit can be exploited during the control system design in order to achieve desirable features, such as self-sensing or control energy minimization. This work proposes an electromechanical physical model of the DEAP actuator system. By means of numerous experiments, it is shown that the model can be used to predict the current by measuring deformation and voltage (electrical dynamics), as well as predicting deformation and current by measuring the voltage (electromechanical dynamics).
2014
ASME 2014 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, SMASIS 2014
978-0-7918-4615-5
Dynamic electromechanical modeling of a spring-biased dielectric electroactive polymer actuator system / Rizzello, Gianluca; Hodgins, Micah; Naso, David; York, Alexer; Seelecke, Stefan. - STAMPA. - (2014). (Intervento presentato al convegno ASME 2014 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, SMASIS 2014 tenutosi a Newport, RI nel September 8-10, 2014) [10.1115/SMASIS2014-7617].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11589/75303
Citazioni
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 2
social impact