A dissimilar full-depth laser-butt welding of low carbon steel and austenitic steel AISI316 was investigated using CW 1.5 kW CO2 laser. The effect of laser power, welding speed and focal point position on mechanical properties (i.e., ultimate tensile strength, UTS and impact strength, IS) and on the operating cost C was investigated using response surface methodology (RSM). The experimental plan was based on Box–Behnken design; linear and quadratic polynomial equations for predicting the mechanical properties were developed. The results indicate that the proposed models predict the responses adequately within the limits of welding parameters being used. The optimum welding conditions were found.

Optimizing the CO2 laser welding process for dissimilar materials

TRICARICO, Luigi;
2013

Abstract

A dissimilar full-depth laser-butt welding of low carbon steel and austenitic steel AISI316 was investigated using CW 1.5 kW CO2 laser. The effect of laser power, welding speed and focal point position on mechanical properties (i.e., ultimate tensile strength, UTS and impact strength, IS) and on the operating cost C was investigated using response surface methodology (RSM). The experimental plan was based on Box–Behnken design; linear and quadratic polynomial equations for predicting the mechanical properties were developed. The results indicate that the proposed models predict the responses adequately within the limits of welding parameters being used. The optimum welding conditions were found.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11589/7580
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • Scopus 46
  • ???jsp.display-item.citation.isi??? 36
social impact