In this paper we study the multiplicity of weak solutions to (possibly resonant) nonlocal equations involving the fractional p-Laplacian operator. More precisely, we consider a Dirichlet problem driven by the fractional p-Laplacian operator and involving a subcritical nonlinear term which does not satisfy the technical Ambrosetti–Rabinowitz condition. By framing this problem in an appropriate variational setting, we prove a multiplicity theorem

Asymptotically linear fractional p-Laplacian equations / Bartolo, Rossella; Molica Bisci, G.. - In: ANNALI DI MATEMATICA PURA ED APPLICATA. - ISSN 0373-3114. - 196:(2017), pp. 427-442. [10.1007/s10231-016-0579-2]

Asymptotically linear fractional p-Laplacian equations

BARTOLO, Rossella;
2017-01-01

Abstract

In this paper we study the multiplicity of weak solutions to (possibly resonant) nonlocal equations involving the fractional p-Laplacian operator. More precisely, we consider a Dirichlet problem driven by the fractional p-Laplacian operator and involving a subcritical nonlinear term which does not satisfy the technical Ambrosetti–Rabinowitz condition. By framing this problem in an appropriate variational setting, we prove a multiplicity theorem
2017
Asymptotically linear fractional p-Laplacian equations / Bartolo, Rossella; Molica Bisci, G.. - In: ANNALI DI MATEMATICA PURA ED APPLICATA. - ISSN 0373-3114. - 196:(2017), pp. 427-442. [10.1007/s10231-016-0579-2]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11589/81863
Citazioni
  • Scopus 17
  • ???jsp.display-item.citation.isi??? 18
social impact