We derive global Holder regularity for the W(0)(1,2)(Omega)-weak solutions to the quasilinear, uniformly elliptic equation div(a(ij)(x, u)D(j)u + a(i)(x, u)) + a(x, u, Du) = 0 over a C(1)-smooth domain Omega subset of R(n), n >= 2. The nonlinear terms are all of Caratheodory type with coefficients a(ij)(x, u) belonging to the class VMO of functions with vanishing mean oscillation with respect to x, while a(i)(x, u) and a(x, u, Du) exhibit controlled growths with respect to u and the gradient Du. (C) 2009 Elsevier Inc. All rights reserved.

Global Hölder continuity of weak solutions to quasilinear divergence form elliptic equations / Palagachev, Dian Kostadinov. - In: JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS. - ISSN 0022-247X. - STAMPA. - 359:1(2009), pp. 159-167. [10.1016/j.jmaa.2009.05.044]

Global Hölder continuity of weak solutions to quasilinear divergence form elliptic equations

Palagachev, Dian Kostadinov
2009-01-01

Abstract

We derive global Holder regularity for the W(0)(1,2)(Omega)-weak solutions to the quasilinear, uniformly elliptic equation div(a(ij)(x, u)D(j)u + a(i)(x, u)) + a(x, u, Du) = 0 over a C(1)-smooth domain Omega subset of R(n), n >= 2. The nonlinear terms are all of Caratheodory type with coefficients a(ij)(x, u) belonging to the class VMO of functions with vanishing mean oscillation with respect to x, while a(i)(x, u) and a(x, u, Du) exhibit controlled growths with respect to u and the gradient Du. (C) 2009 Elsevier Inc. All rights reserved.
2009
http://www.sciencedirect.com/science/article/pii/S0022247X0900448X
Global Hölder continuity of weak solutions to quasilinear divergence form elliptic equations / Palagachev, Dian Kostadinov. - In: JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS. - ISSN 0022-247X. - STAMPA. - 359:1(2009), pp. 159-167. [10.1016/j.jmaa.2009.05.044]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11589/9220
Citazioni
  • Scopus 19
  • ???jsp.display-item.citation.isi??? 18
social impact