We consider higher-order Camassa–Holme quations describing exponential curves of the manifold of smooth orientation-preserving diffeomorphisms of the unit circle in the plane. We establish the existence of global weak solutions. We also present some invariant spaces under the action of the equation. Moreover, we prove a “weak equals strong” uniqueness result.

Well-posedness of higher-order Camassa–Holm equations / Coclite, Giuseppe Maria; Holden, H; Karlsen, K. H.. - In: JOURNAL OF DIFFERENTIAL EQUATIONS. - ISSN 0022-0396. - 246:3(2009), pp. 929-963. [10.1016/j.jde.2008.04.014]

Well-posedness of higher-order Camassa–Holm equations

COCLITE, Giuseppe Maria;
2009-01-01

Abstract

We consider higher-order Camassa–Holme quations describing exponential curves of the manifold of smooth orientation-preserving diffeomorphisms of the unit circle in the plane. We establish the existence of global weak solutions. We also present some invariant spaces under the action of the equation. Moreover, we prove a “weak equals strong” uniqueness result.
2009
http://www.sciencedirect.com/science/article/pii/S0022039608001964
Well-posedness of higher-order Camassa–Holm equations / Coclite, Giuseppe Maria; Holden, H; Karlsen, K. H.. - In: JOURNAL OF DIFFERENTIAL EQUATIONS. - ISSN 0022-0396. - 246:3(2009), pp. 929-963. [10.1016/j.jde.2008.04.014]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11589/93829
Citazioni
  • Scopus 46
  • ???jsp.display-item.citation.isi??? 48
social impact