We consider the Rosenau-Korteweg-de Vries equation, which contains nonlinear dispersive effects. We prove that as the diffusion parameter tends to zero, the solutions of the dispersive equation converge to discontinuous weak solutions of the Burgers equation. The proof relies on deriving suitable a priori estimates together with an application of the $L^p$ compensated compactness method.
A singular limit problem for conservation laws related to the Rosenau-Korteweg-de Vries equation / Coclite, Giuseppe Maria; di Ruvo, L.. - In: JOURNAL DE MATHÉMATIQUES PURES ET APPLIQUÉES. - ISSN 0021-7824. - 107:3(2017), pp. 315-335. [10.1016/j.matpur.2016.07.002]
A singular limit problem for conservation laws related to the Rosenau-Korteweg-de Vries equation
COCLITE, Giuseppe Maria;
2017-01-01
Abstract
We consider the Rosenau-Korteweg-de Vries equation, which contains nonlinear dispersive effects. We prove that as the diffusion parameter tends to zero, the solutions of the dispersive equation converge to discontinuous weak solutions of the Burgers equation. The proof relies on deriving suitable a priori estimates together with an application of the $L^p$ compensated compactness method.File | Dimensione | Formato | |
---|---|---|---|
Coclite-diRuvo.pdf
accesso aperto
Descrizione: articolo principale
Tipologia:
Documento in Pre-print
Licenza:
Creative commons
Dimensione
355.9 kB
Formato
Adobe PDF
|
355.9 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.