We measured the facet temperature profiles of GaInAs/AlInAs quantum cascade lasers (QCLs) operating in continuous wave mode by means of microprobe photoluminescence. These results were used to evaluate the in-plane (k |) and the cross-plane (k⊥) thermal conductivities of the active region and to validate a two-dimensional model for the anisotropic heat diffusion in QCLs. In the temperature range of 80-250 K, k ⊥ monotonically increases with temperature and remains one order of magnitude smaller than the thermal conductivities of bulk constituent materials. We found an excellent agreement between the calculated and experimental values of the thermal resistance of GaInAs/AlInAs QCLs operating in continuous wave up to 400 K. Comparison between the calculated thermal performances of QCLs sharing the same active region structure, but having either a buried or a ridge waveguide, shows that devices with Au contact layers thicker than 4 μm have better thermal properties than the buried structures

Thermal modelling of GaInAs/AlInAs quantum cascade lasers

SPAGNOLO, Vincenzo Luigi;
2006

Abstract

We measured the facet temperature profiles of GaInAs/AlInAs quantum cascade lasers (QCLs) operating in continuous wave mode by means of microprobe photoluminescence. These results were used to evaluate the in-plane (k |) and the cross-plane (k⊥) thermal conductivities of the active region and to validate a two-dimensional model for the anisotropic heat diffusion in QCLs. In the temperature range of 80-250 K, k ⊥ monotonically increases with temperature and remains one order of magnitude smaller than the thermal conductivities of bulk constituent materials. We found an excellent agreement between the calculated and experimental values of the thermal resistance of GaInAs/AlInAs QCLs operating in continuous wave up to 400 K. Comparison between the calculated thermal performances of QCLs sharing the same active region structure, but having either a buried or a ridge waveguide, shows that devices with Au contact layers thicker than 4 μm have better thermal properties than the buried structures
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11589/9661
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • Scopus 80
  • ???jsp.display-item.citation.isi??? 72
social impact