In this paper a Morse Theory for lightlike geodesics joining a point with a timelike curve is obtained on a stably Causal space-times with boundary. Some applications to the multiple image effect are presented. In particular, we give some conditions on the geometry and the topology of space-time, in order that the number of images in the gravitational lens effect is infinite or odd.

A Morse Theory for light rays on stably causal Lorentzian manifolds / Giannoni, F; Masiello, A; Piccione, P. - In: ANNALES DE L'INSTITUT HENRI POINCARE-PHYSIQUE THEORIQUE. - ISSN 0246-0211. - STAMPA. - 69:4(1998), pp. 359-412.

A Morse Theory for light rays on stably causal Lorentzian manifolds

Masiello, A;
1998-01-01

Abstract

In this paper a Morse Theory for lightlike geodesics joining a point with a timelike curve is obtained on a stably Causal space-times with boundary. Some applications to the multiple image effect are presented. In particular, we give some conditions on the geometry and the topology of space-time, in order that the number of images in the gravitational lens effect is infinite or odd.
1998
http://www.numdam.org/item/AIHPA_1998__69_4_359_0
A Morse Theory for light rays on stably causal Lorentzian manifolds / Giannoni, F; Masiello, A; Piccione, P. - In: ANNALES DE L'INSTITUT HENRI POINCARE-PHYSIQUE THEORIQUE. - ISSN 0246-0211. - STAMPA. - 69:4(1998), pp. 359-412.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11589/10167
Citazioni
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 23
social impact