Let a pure state |ψ〉 be chosen randomly in an NM-dimensional Hilbert space, and consider the reduced density matrix ρA of an N-dimensional subsystem. The bipartite entanglement properties of |ψ〉 are encoded in the spectrum of ρA. By means of a saddle point method and using a “Coulomb gas” model for the eigenvalues, we obtain the typical spectrum of reduced density matrices. We consider the cases of an unbiased ensemble of pure states and of a fixed value of the purity. We finally obtain the eigenvalue distribution by using a statistical mechanics approach based on the introduction of a partition function.

Typical entanglement

FLORIO, Giuseppe;
2013-01-01

Abstract

Let a pure state |ψ〉 be chosen randomly in an NM-dimensional Hilbert space, and consider the reduced density matrix ρA of an N-dimensional subsystem. The bipartite entanglement properties of |ψ〉 are encoded in the spectrum of ρA. By means of a saddle point method and using a “Coulomb gas” model for the eigenvalues, we obtain the typical spectrum of reduced density matrices. We consider the cases of an unbiased ensemble of pure states and of a fixed value of the purity. We finally obtain the eigenvalue distribution by using a statistical mechanics approach based on the introduction of a partition function.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11589/101723
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 7
social impact