A previous paper(1) has introduced a class of random functions in R-n called iterated random pulse (IRP) processes. IRP processes are sums of pulses whose locations form an iterated clustered point process and whose deterministic shapes, sizes and amplitudes satisfy affine scaling relations. In the simplest case, at each finer scale the pulse support is isotropically contracted by a factor r > 1 and the amplitude is multiplied by r(-gamma), where gamma > -n is a given constant and n is the space dimension. We consider extensions in which the pulse amplitudes are random variables with a multiplicative cascade structure. This means that, if a parent pulse at a certain level has amplitude A, its offspring pulses at the next level have amplitudes A(i) = Ar-etai(-gamma), where the eta(i) are positive iid variables with mean value 1. Interest is in the generalized field X(h) = lim(j-->infinity) X-j(h) where h(t) is a test function, X-j(h) integral h(t)X-j(t)dt, and Xj(t) is the pulse field at resolution level j. We show that X(h) is multifractal at small scales. We also derive its scaling properties and the fractal dimension of the support, In the case of non-isotropic contraction of the pulse support from level j to level j + 1, X(h) has a more general form of multifractality known as generalized scale invariance (gsi). This seems to be the first known construction of gsi random fields.

Multifractality of iterated pulse processes with pulse amplitudes generated by a random cascade / Veneziano, D.; Furcolo, P.; Iacobellis, V.. - In: FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY. - ISSN 0218-348X. - STAMPA. - 10:2(2002), pp. 209-222. [10.1142/S0218348X02001026]

Multifractality of iterated pulse processes with pulse amplitudes generated by a random cascade

Iacobellis, V.
2002-01-01

Abstract

A previous paper(1) has introduced a class of random functions in R-n called iterated random pulse (IRP) processes. IRP processes are sums of pulses whose locations form an iterated clustered point process and whose deterministic shapes, sizes and amplitudes satisfy affine scaling relations. In the simplest case, at each finer scale the pulse support is isotropically contracted by a factor r > 1 and the amplitude is multiplied by r(-gamma), where gamma > -n is a given constant and n is the space dimension. We consider extensions in which the pulse amplitudes are random variables with a multiplicative cascade structure. This means that, if a parent pulse at a certain level has amplitude A, its offspring pulses at the next level have amplitudes A(i) = Ar-etai(-gamma), where the eta(i) are positive iid variables with mean value 1. Interest is in the generalized field X(h) = lim(j-->infinity) X-j(h) where h(t) is a test function, X-j(h) integral h(t)X-j(t)dt, and Xj(t) is the pulse field at resolution level j. We show that X(h) is multifractal at small scales. We also derive its scaling properties and the fractal dimension of the support, In the case of non-isotropic contraction of the pulse support from level j to level j + 1, X(h) has a more general form of multifractality known as generalized scale invariance (gsi). This seems to be the first known construction of gsi random fields.
2002
Multifractality of iterated pulse processes with pulse amplitudes generated by a random cascade / Veneziano, D.; Furcolo, P.; Iacobellis, V.. - In: FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY. - ISSN 0218-348X. - STAMPA. - 10:2(2002), pp. 209-222. [10.1142/S0218348X02001026]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11589/10202
Citazioni
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 11
social impact