We extend the classical Morse inequalities in Riemannian Geometry to the geodesics joining two nonconjugate points on a Lorentzian manifold. The Morse inequalities are obtained developing a Morse Theory for a class of strongly indefinite functionals.

On the Morse inequalities for geodesics on Lorentzian manifolds / Abbondandolo, A.; Benci, V.; Fortunato, D.; Masiello, A.. - In: MATHEMATICAL RESEARCH LETTERS. - ISSN 1073-2780. - STAMPA. - 10:4(2003), pp. 435-445. [10.4310/MRL.2003.v10.n4.a3]

On the Morse inequalities for geodesics on Lorentzian manifolds

Masiello, A.
2003-01-01

Abstract

We extend the classical Morse inequalities in Riemannian Geometry to the geodesics joining two nonconjugate points on a Lorentzian manifold. The Morse inequalities are obtained developing a Morse Theory for a class of strongly indefinite functionals.
2003
On the Morse inequalities for geodesics on Lorentzian manifolds / Abbondandolo, A.; Benci, V.; Fortunato, D.; Masiello, A.. - In: MATHEMATICAL RESEARCH LETTERS. - ISSN 1073-2780. - STAMPA. - 10:4(2003), pp. 435-445. [10.4310/MRL.2003.v10.n4.a3]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11589/10349
Citazioni
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 6
social impact