A methodology based on the ISO 14031:2013 guideline has been developed and applied to a full-scale fluidized bed waste to energy plant (WtE) burning solid recovered fuel (SRF). With reference to 3 years of operation, the data on energy and environmental performance, on raw materials consumptions such as sand and diesel fuel, accidental reasons of plant shutdown, have been acquired and analyzed. The obtained results have allowed to quantify the energy and environmental performance of the WtE plant under investigation by varying the amount and mixings of the inlet waste, available in form of thickened and fluff (similar to coriander) SRF. In terms of the energy performance, the fluidized bed technology applied to the SRF was able to guarantee an adequate production of electricity (satisfying the market demands), showing a relative flexibility with respect to the inlet waste. In terms of net energy production efficiency, the plant showed values in the range of 13.8–14.9% in line with similar installations. In terms of the environmental performance, the adoption of a cleaning system based on SNCR (Selective Non Catalitic Reduction) + semi-dry scrubbing + Fabric filter generated emissions usually well below the limits set by the EU Directive 2000/76/EC as well as the Italian Law 46/2014 (more restrictive) with reference to all the key parameters. In terms of the plant shutdown, the majority of problems focused on the combustion chamber and boiler due to the erosion of the refractory material of the furnace as well as to the breaking of the superheaters of the boiler. In contrast, the mechanical and electrical causes, along with those related to the control and instrumentation system, were of secondary importance. The sand bed de-fluidization was also among the leading causes of a frequent plant shutdown. In particular, results showed how although the SRF presents standard characteristics, the use of different mixtures may affect the number of plant shutdowns. The full-scale data highlighted how the lower the rate of fluff in the mixture was, the greater the number of plant shutdown due to sand bed de-fluidization was. Finally, the aspects in terms of the energy, environmental protection and raw material consumption have been discussed with reference to similar WtE plants such as Robbins (Chicago, USA), Lidköping (Sweden), Toshima (Tokyo, Japan), Madrid (Spain), Dundee (Scotland, UK) and Valene (Mantes la Jolie, France).
Energy, environmental and operation aspects of a SRF-fired fluidized bed waste-to-energy plant / DE GISI, Sabino; Agnese, Chiarelli; Luca, Tagliente; Notarnicola, Michele. - In: WASTE MANAGEMENT. - ISSN 0956-053X. - STAMPA. - 73:(2018), pp. 271-286. [10.1016/j.wasman.2017.04.044]
Energy, environmental and operation aspects of a SRF-fired fluidized bed waste-to-energy plant
DE GISI, Sabino
;NOTARNICOLA, Michele
2018-01-01
Abstract
A methodology based on the ISO 14031:2013 guideline has been developed and applied to a full-scale fluidized bed waste to energy plant (WtE) burning solid recovered fuel (SRF). With reference to 3 years of operation, the data on energy and environmental performance, on raw materials consumptions such as sand and diesel fuel, accidental reasons of plant shutdown, have been acquired and analyzed. The obtained results have allowed to quantify the energy and environmental performance of the WtE plant under investigation by varying the amount and mixings of the inlet waste, available in form of thickened and fluff (similar to coriander) SRF. In terms of the energy performance, the fluidized bed technology applied to the SRF was able to guarantee an adequate production of electricity (satisfying the market demands), showing a relative flexibility with respect to the inlet waste. In terms of net energy production efficiency, the plant showed values in the range of 13.8–14.9% in line with similar installations. In terms of the environmental performance, the adoption of a cleaning system based on SNCR (Selective Non Catalitic Reduction) + semi-dry scrubbing + Fabric filter generated emissions usually well below the limits set by the EU Directive 2000/76/EC as well as the Italian Law 46/2014 (more restrictive) with reference to all the key parameters. In terms of the plant shutdown, the majority of problems focused on the combustion chamber and boiler due to the erosion of the refractory material of the furnace as well as to the breaking of the superheaters of the boiler. In contrast, the mechanical and electrical causes, along with those related to the control and instrumentation system, were of secondary importance. The sand bed de-fluidization was also among the leading causes of a frequent plant shutdown. In particular, results showed how although the SRF presents standard characteristics, the use of different mixtures may affect the number of plant shutdowns. The full-scale data highlighted how the lower the rate of fluff in the mixture was, the greater the number of plant shutdown due to sand bed de-fluidization was. Finally, the aspects in terms of the energy, environmental protection and raw material consumption have been discussed with reference to similar WtE plants such as Robbins (Chicago, USA), Lidköping (Sweden), Toshima (Tokyo, Japan), Madrid (Spain), Dundee (Scotland, UK) and Valene (Mantes la Jolie, France).I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.