In this paper we use functional analytical techniques to determine the differential equation satisfied by the eigenvalues of a smooth family of Fredholm operators, obtained from the index form along a Lorentzian geodesic. The formula is then applied to the study of the evolution of the index function, and, using a perturbation argument, we prove a version of the classical Morse index theorem for stationary Lorentzian manifolds.

On the spectral flow in Lorentzian manifolds / Masiello, Antonio; Piccione, Paolo. - In: ANNALI DI MATEMATICA PURA ED APPLICATA. - ISSN 0373-3114. - STAMPA. - 182:1(2003), pp. 81-101. [10.1007/s10231-002-0057-x]

On the spectral flow in Lorentzian manifolds

Antonio Masiello;
2003-01-01

Abstract

In this paper we use functional analytical techniques to determine the differential equation satisfied by the eigenvalues of a smooth family of Fredholm operators, obtained from the index form along a Lorentzian geodesic. The formula is then applied to the study of the evolution of the index function, and, using a perturbation argument, we prove a version of the classical Morse index theorem for stationary Lorentzian manifolds.
2003
On the spectral flow in Lorentzian manifolds / Masiello, Antonio; Piccione, Paolo. - In: ANNALI DI MATEMATICA PURA ED APPLICATA. - ISSN 0373-3114. - STAMPA. - 182:1(2003), pp. 81-101. [10.1007/s10231-002-0057-x]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11589/10511
Citazioni
  • Scopus 1
  • ???jsp.display-item.citation.isi??? ND
social impact