We establish a global weighted $W^{1,p}$-regularity for solutions to variational inequalities and obstacle problems for divergence form elliptic systems with measurable coefficients in bounded non-smooth domains.

Elliptic obstacle problems with measurable coefficients in non-smooth domains / Byun, S. S.; Palagachev, Dian Kostadinov; Ryu, S.. - In: NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION. - ISSN 0163-0563. - 35:7-9(2014), pp. 895753.893-895753.910. [10.1080/01630563.2014.895753]

Elliptic obstacle problems with measurable coefficients in non-smooth domains

PALAGACHEV, Dian Kostadinov;
2014-01-01

Abstract

We establish a global weighted $W^{1,p}$-regularity for solutions to variational inequalities and obstacle problems for divergence form elliptic systems with measurable coefficients in bounded non-smooth domains.
2014
http://www.tandfonline.com/doi/abs/10.1080/01630563.2014.895753
Elliptic obstacle problems with measurable coefficients in non-smooth domains / Byun, S. S.; Palagachev, Dian Kostadinov; Ryu, S.. - In: NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION. - ISSN 0163-0563. - 35:7-9(2014), pp. 895753.893-895753.910. [10.1080/01630563.2014.895753]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11589/1057
Citazioni
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 6
social impact