The evaluation of the exposure to risk factors in workplaces and their subsequent redesign represent one of the practices to lessen the frequency of work-related musculoskeletal disorders. In this paper we present K2RULA, a semi-automatic RULA evaluation software based on the Microsoft Kinect v2 depth camera, aimed at detecting awkward postures in real time, but also in off-line analysis. We validated our tool with two experiments. In the first one, we compared the K2RULA grand-scores with those obtained with a reference optical motion capture system and we found a statistical perfect match according to the Landis and Koch scale (proportion agreement index = 0.97, k = 0.87). In the second experiment, we evaluated the agreement of the grand-scores returned by the proposed application with those obtained by a RULA expert rater, finding again a statistical perfect match (proportion agreement index = 0.96, k = 0.84), whereas a commercial software based on Kinect v1 sensor showed a lower agreement (proportion agreement index = 0.82, k = 0.34).

Real time RULA assessment using Kinect v2 sensor

MANGHISI, Vito Modesto;UVA, Antonio Emmanuele;FIORENTINO, Michele;BEVILACQUA, Vitoantonio;TROTTA, Gianpaolo Francesco;MONNO, Giuseppe
2017

Abstract

The evaluation of the exposure to risk factors in workplaces and their subsequent redesign represent one of the practices to lessen the frequency of work-related musculoskeletal disorders. In this paper we present K2RULA, a semi-automatic RULA evaluation software based on the Microsoft Kinect v2 depth camera, aimed at detecting awkward postures in real time, but also in off-line analysis. We validated our tool with two experiments. In the first one, we compared the K2RULA grand-scores with those obtained with a reference optical motion capture system and we found a statistical perfect match according to the Landis and Koch scale (proportion agreement index = 0.97, k = 0.87). In the second experiment, we evaluated the agreement of the grand-scores returned by the proposed application with those obtained by a RULA expert rater, finding again a statistical perfect match (proportion agreement index = 0.96, k = 0.84), whereas a commercial software based on Kinect v1 sensor showed a lower agreement (proportion agreement index = 0.82, k = 0.34).
File in questo prodotto:
File Dimensione Formato  
s1 pre -2017-Real time RULA assessment.pdf

accesso aperto

Descrizione: preprint
Tipologia: Documento in Pre-print
Licenza: Creative commons
Dimensione 1.46 MB
Formato Adobe PDF
1.46 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11589/106712
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • Scopus 113
  • ???jsp.display-item.citation.isi??? 90
social impact