We derive W-2,W-p(Omega)-a priori estimates with arbitrary p epsilon (1, infinity), for the solutions of a degenerate oblique derivative problem for linear uniformly elliptic operators with low regular coefficients. The boundary operator is given in terms of directional derivative with respect to a vector field l that is tangent to delta Omega at the points of a non-empty set epsilon subset of delta Omega and is of emergent type on delta Omega.

W^{2,p}-a priori estimates for the emergent Poincaré Problem

Palagachev, Dian Kostadinov
2008

Abstract

We derive W-2,W-p(Omega)-a priori estimates with arbitrary p epsilon (1, infinity), for the solutions of a degenerate oblique derivative problem for linear uniformly elliptic operators with low regular coefficients. The boundary operator is given in terms of directional derivative with respect to a vector field l that is tangent to delta Omega at the points of a non-empty set epsilon subset of delta Omega and is of emergent type on delta Omega.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11589/11340
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 6
social impact