In this paper we consider the singularly perturbed Dirichlet problem (P$_{\varepsilon}$), when the potential $a_{\varepsilon}(x)$, as $\varepsilon$ goes to $0$, is concentrating round a point $x_0\in\Omega$. Under suitable growth assumptions on $f$, we prove that (P$_{\varepsilon}$) has at least three distinct solutions whatever $\Omega$ is and that at least one solution is not a one-peak solution

Multiple positive solutions for a singularly perturbed Dirichlet problem in "geometrically trivial" domains / Cerami, Giovanna; Maniscalco, Caterina. - In: TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS. - ISSN 1230-3429. - STAMPA. - 19:1(2002), pp. 63-76. [10.12775/TMNA.2002.004]

Multiple positive solutions for a singularly perturbed Dirichlet problem in "geometrically trivial" domains

Giovanna Cerami;
2002-01-01

Abstract

In this paper we consider the singularly perturbed Dirichlet problem (P$_{\varepsilon}$), when the potential $a_{\varepsilon}(x)$, as $\varepsilon$ goes to $0$, is concentrating round a point $x_0\in\Omega$. Under suitable growth assumptions on $f$, we prove that (P$_{\varepsilon}$) has at least three distinct solutions whatever $\Omega$ is and that at least one solution is not a one-peak solution
2002
Multiple positive solutions for a singularly perturbed Dirichlet problem in "geometrically trivial" domains / Cerami, Giovanna; Maniscalco, Caterina. - In: TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS. - ISSN 1230-3429. - STAMPA. - 19:1(2002), pp. 63-76. [10.12775/TMNA.2002.004]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11589/11437
Citazioni
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact