Bridge seismic isolation strategy is based on the reduction of shear forces transmitted from the superstructure to the piers by two means: shifting natural period and earthquake input energy reduction by dissipation concentrated in protection devices. In this paper, a stochastic analysis of a simple isolated bridge model for different bridge and device parameters is conducted to assess the efficiency of this seismic protection strategy. To achieve this aim, a simple nonlinear softening constitutive law is adopted to model a wide range of isolation devices, characterized by only three essential mechanical parameters. As a consequence of the random nature of seismic motion, a probabilistic analysis is carried out and the time modulated Kanai-Tajimi stochastic process is adopted to represent the seismic action. The response covariance in the state space is obtained by solving the Lyapunov equation for a stochastic linearized system. After a sensitivity analysis, the failure probability referred to extreme displacement and the mean value of dissipated energy are assessed by using the introduced stochastic indices of seismic bridge protection efficiency. A parametric analysis for protective devices with different mechanical parameters is developed for a proper selection of parameters of isolation devices under different situations.

Probabilistic seismic response and reliability assessment of isolated bridges / Marano, Giuseppe Carlo. - In: EARTHQUAKE ENGINEERING AND ENGINEERING VIBRATION. - ISSN 1671-3664. - 4:1(2005), pp. 95-106. [10.1007/s11803-005-0028-5]

Probabilistic seismic response and reliability assessment of isolated bridges

Marano, Giuseppe Carlo
2005

Abstract

Bridge seismic isolation strategy is based on the reduction of shear forces transmitted from the superstructure to the piers by two means: shifting natural period and earthquake input energy reduction by dissipation concentrated in protection devices. In this paper, a stochastic analysis of a simple isolated bridge model for different bridge and device parameters is conducted to assess the efficiency of this seismic protection strategy. To achieve this aim, a simple nonlinear softening constitutive law is adopted to model a wide range of isolation devices, characterized by only three essential mechanical parameters. As a consequence of the random nature of seismic motion, a probabilistic analysis is carried out and the time modulated Kanai-Tajimi stochastic process is adopted to represent the seismic action. The response covariance in the state space is obtained by solving the Lyapunov equation for a stochastic linearized system. After a sensitivity analysis, the failure probability referred to extreme displacement and the mean value of dissipated energy are assessed by using the introduced stochastic indices of seismic bridge protection efficiency. A parametric analysis for protective devices with different mechanical parameters is developed for a proper selection of parameters of isolation devices under different situations.
2005
Probabilistic seismic response and reliability assessment of isolated bridges / Marano, Giuseppe Carlo. - In: EARTHQUAKE ENGINEERING AND ENGINEERING VIBRATION. - ISSN 1671-3664. - 4:1(2005), pp. 95-106. [10.1007/s11803-005-0028-5]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11589/11463
Citazioni
  • Scopus 6
  • ???jsp.display-item.citation.isi??? ND
social impact