The following $T^2$-equivariant problem of periodic type is considered: $$ \cases u\in C^2({\mathbb R}^2,{\mathbb R}),\cr -\varepsilon\Delta u(x,y)+F^{\prime }(u(x,y))=0 & \text{in ${\mathbb R}^{2}$,}\cr u(x,y)=u(x+T,y)=u(x,y+S) &\text{for all $(x,y)\in {\mathbb R}^2$,}\cr \nabla u(x,y)=\nabla u(x+T,y)=\nabla u(x,y+S) &\text{for all $(x,y)\in {\mathbb R}^{2}$.} \endcases\tag{\text{P}} $$ Using a suitable version of Morse theory for equivariant problems, it is proved that an arbitrarily great number of orbits of solutions to (P) is founded, choosing $\varepsilon> 0$ suitably small. Each orbit is homeomorphic to $S^1$ or to $T^2$.
Morse theory applied to a $T^{2}$-equivariant problem / Vannella, Giuseppina. - In: TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS. - ISSN 1230-3429. - STAMPA. - 17:1(2001), pp. 41-53. [10.12775/TMNA.2001.003]
Morse theory applied to a $T^{2}$-equivariant problem
Giuseppina Vannella
2001-01-01
Abstract
The following $T^2$-equivariant problem of periodic type is considered: $$ \cases u\in C^2({\mathbb R}^2,{\mathbb R}),\cr -\varepsilon\Delta u(x,y)+F^{\prime }(u(x,y))=0 & \text{in ${\mathbb R}^{2}$,}\cr u(x,y)=u(x+T,y)=u(x,y+S) &\text{for all $(x,y)\in {\mathbb R}^2$,}\cr \nabla u(x,y)=\nabla u(x+T,y)=\nabla u(x,y+S) &\text{for all $(x,y)\in {\mathbb R}^{2}$.} \endcases\tag{\text{P}} $$ Using a suitable version of Morse theory for equivariant problems, it is proved that an arbitrarily great number of orbits of solutions to (P) is founded, choosing $\varepsilon> 0$ suitably small. Each orbit is homeomorphic to $S^1$ or to $T^2$.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.