Some constructions of maximal partial spreads of finite classical polar spaces are provided. In particular we show that, for n≥1, H(4n−1,q2) has a maximal partial spread of size q2n+1, H(4n+1,q2) has a maximal partial spread of size q2n+1+1 and, for n≥2, Q+(4n−1,q), Q(4n−2,q), W(4n−1,q), q even, W(4n−3,q), q even, have a maximal partial spread of size qn+1.
Maximal partial spreads of polar spaces / Cossidente, Antonio; Pavese, Francesco. - In: ELECTRONIC JOURNAL OF COMBINATORICS. - ISSN 1077-8926. - ELETTRONICO. - 24:2(2017).
Maximal partial spreads of polar spaces
Francesco Pavese
2017-01-01
Abstract
Some constructions of maximal partial spreads of finite classical polar spaces are provided. In particular we show that, for n≥1, H(4n−1,q2) has a maximal partial spread of size q2n+1, H(4n+1,q2) has a maximal partial spread of size q2n+1+1 and, for n≥2, Q+(4n−1,q), Q(4n−2,q), W(4n−1,q), q even, W(4n−3,q), q even, have a maximal partial spread of size qn+1.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
439-945-5-PB.pdf
accesso aperto
Tipologia:
Versione editoriale
Licenza:
Tutti i diritti riservati
Dimensione
312.21 kB
Formato
Adobe PDF
|
312.21 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.