In this paper the question of finding infinitely many solutions to the problem $−\Delta u +a(x)u =|u|^{p−2}u$ , in $R^N$, u ∈H^1(R^N), is considered when N≥2, p∈(2, 2N/(N−2)), and the potential a(x) is a positive function which is not required to enjoy symmetry properties. Assuming that a(x)satisfies a suitable “slow decay at infinity” condition and, moreover, that its graph has some “dips”, we prove that the problem admits either infinitely many nodal solutions orinfinitely many constant sign solutions. The proof method is purely variational and allows to describe the shape of the solutions.

Multiplicity of Positive and Nodal Solutions for Scalar Field Equations / Cerami, Giovanna; Molle, R.; Passaseo, D.. - In: JOURNAL OF DIFFERENTIAL EQUATIONS. - ISSN 0022-0396. - 257:10(2014), pp. 3554-3606. [10.1016/j.jde.2014.07.002]

Multiplicity of Positive and Nodal Solutions for Scalar Field Equations

CERAMI, Giovanna;
2014-01-01

Abstract

In this paper the question of finding infinitely many solutions to the problem $−\Delta u +a(x)u =|u|^{p−2}u$ , in $R^N$, u ∈H^1(R^N), is considered when N≥2, p∈(2, 2N/(N−2)), and the potential a(x) is a positive function which is not required to enjoy symmetry properties. Assuming that a(x)satisfies a suitable “slow decay at infinity” condition and, moreover, that its graph has some “dips”, we prove that the problem admits either infinitely many nodal solutions orinfinitely many constant sign solutions. The proof method is purely variational and allows to describe the shape of the solutions.
2014
http://www.sciencedirect.com/science/article/pii/S0022039614003040
Multiplicity of Positive and Nodal Solutions for Scalar Field Equations / Cerami, Giovanna; Molle, R.; Passaseo, D.. - In: JOURNAL OF DIFFERENTIAL EQUATIONS. - ISSN 0022-0396. - 257:10(2014), pp. 3554-3606. [10.1016/j.jde.2014.07.002]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11589/1570
Citazioni
  • Scopus 17
  • ???jsp.display-item.citation.isi??? 17
social impact