n this paper we develop an algorithm for adaptive compensation class of methods. Literature offers a wide control of unconventional actuators based on Prandtl-Ishlinskii models and Lyapunov design. The chosen family of models is general enough to capture the strongly variable shapes of the hysteresis exhibited by some electro-active materials and has an inverse model that can be computed analytically. The approach proposed in this paper adapts the parameters of the model with a learning law based on the minimization of the tracking error, has the useful property of allowing the analytical and handles the parameters having a nonlinear influence on the output of the model by means of linearization. An outer position loop is then introduced to compensate the residual compensation error and further improve the tracking performance. The advantages and limitations of the approach are discussed and confirmed by experiments on a mechatronic position actuator based on magnetic shape memory alloys.

Adaptive Approximation-Based Control of Hysteretic Unconventional Actuators

NASO, David;TURCHIANO, Biagio;
2011

Abstract

n this paper we develop an algorithm for adaptive compensation class of methods. Literature offers a wide control of unconventional actuators based on Prandtl-Ishlinskii models and Lyapunov design. The chosen family of models is general enough to capture the strongly variable shapes of the hysteresis exhibited by some electro-active materials and has an inverse model that can be computed analytically. The approach proposed in this paper adapts the parameters of the model with a learning law based on the minimization of the tracking error, has the useful property of allowing the analytical and handles the parameters having a nonlinear influence on the output of the model by means of linearization. An outer position loop is then introduced to compensate the residual compensation error and further improve the tracking performance. The advantages and limitations of the approach are discussed and confirmed by experiments on a mechatronic position actuator based on magnetic shape memory alloys.
50th IEEE Conference on Decision and Control and European Control Conference, CDC-ECC 2011
978-1-61284-800-6
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11589/16628
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 5
social impact