This paper provides a contribution towards developing robust and accurate multidimensional upwind schemes based on a characteristic decomposition of the Euler equations and a fluctuation splitting space discretization. A new nonlinear matrix scheme is presented which extends the concept of nonlinear advection velocity to the Euler system. The scheme is shown to provide second-order-accurate results for subsonic, transonic and supersonic flows, while capturing shocks monotonically.

A contribution to multidimensional upwinding and fluctuation splitting - Nonlinear matrix schemes / Catalano, L.; De Palma, P.; Pascazio, G.; Napolitano, M.. - ELETTRONICO. - AIAA-97-2031(1997), pp. 914-921. (Intervento presentato al convegno 13th Computational Fluid Dynamics Conference, 1997 tenutosi a Snowmass Village, CO nel 29 June 1997 - 02 July 1997) [10.2514/6.1997-2031].

A contribution to multidimensional upwinding and fluctuation splitting - Nonlinear matrix schemes

L. Catalano;P. De Palma;G. Pascazio;M. Napolitano
1997-01-01

Abstract

This paper provides a contribution towards developing robust and accurate multidimensional upwind schemes based on a characteristic decomposition of the Euler equations and a fluctuation splitting space discretization. A new nonlinear matrix scheme is presented which extends the concept of nonlinear advection velocity to the Euler system. The scheme is shown to provide second-order-accurate results for subsonic, transonic and supersonic flows, while capturing shocks monotonically.
1997
13th Computational Fluid Dynamics Conference, 1997
A contribution to multidimensional upwinding and fluctuation splitting - Nonlinear matrix schemes / Catalano, L.; De Palma, P.; Pascazio, G.; Napolitano, M.. - ELETTRONICO. - AIAA-97-2031(1997), pp. 914-921. (Intervento presentato al convegno 13th Computational Fluid Dynamics Conference, 1997 tenutosi a Snowmass Village, CO nel 29 June 1997 - 02 July 1997) [10.2514/6.1997-2031].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11589/17020
Citazioni
  • Scopus 1
  • ???jsp.display-item.citation.isi??? ND
social impact