This paper deals with the following nonlinear equations Mλ,Λ ±(D2u)+g(u)=0inRN,where Mλ,Λ ± are the Pucci's extremal operators, for N⩾1 and under the assumption g′(0)>0. We show the existence of oscillating solutions, namely with an unbounded sequence of zeros. Moreover these solutions are periodic, if N=1, while they are radial symmetric and decay to zero at infinity with their derivatives, if N⩾2.

Oscillating solutions for nonlinear equations involving the Pucci's extremal operators

d'Avenia, Pietro
;
Pomponio, Alessio
2020-01-01

Abstract

This paper deals with the following nonlinear equations Mλ,Λ ±(D2u)+g(u)=0inRN,where Mλ,Λ ± are the Pucci's extremal operators, for N⩾1 and under the assumption g′(0)>0. We show the existence of oscillating solutions, namely with an unbounded sequence of zeros. Moreover these solutions are periodic, if N=1, while they are radial symmetric and decay to zero at infinity with their derivatives, if N⩾2.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11589/170843
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact