In this paper we study the following nonlinear Schrödinger equation with magnetic field (equation presented) where ϵ > 0 is a parameter, V : R2 → R and A : R2 → R2 are continuous potentials, and f : R → R has exponential critical growth. Under a local assumption on the potential V, by variational methods, penalization technique, and Ljusternik-Schnirelmann theory, we prove multiplicity and concentration of solutions for ϵ small

Multiplicity and Concentration Results for a Magnetic Schrödinger Equation With Exponential Critical Growth in ℝ2 / D'Avenia, Pietro; Ji, Chao. - In: INTERNATIONAL MATHEMATICS RESEARCH NOTICES. - ISSN 1073-7928. - STAMPA. - 2022:2(2022), pp. 862-897. [10.1093/imrn/rnaa074]

Multiplicity and Concentration Results for a Magnetic Schrödinger Equation With Exponential Critical Growth in ℝ2

d'Avenia, Pietro;
2022-01-01

Abstract

In this paper we study the following nonlinear Schrödinger equation with magnetic field (equation presented) where ϵ > 0 is a parameter, V : R2 → R and A : R2 → R2 are continuous potentials, and f : R → R has exponential critical growth. Under a local assumption on the potential V, by variational methods, penalization technique, and Ljusternik-Schnirelmann theory, we prove multiplicity and concentration of solutions for ϵ small
2022
Multiplicity and Concentration Results for a Magnetic Schrödinger Equation With Exponential Critical Growth in ℝ2 / D'Avenia, Pietro; Ji, Chao. - In: INTERNATIONAL MATHEMATICS RESEARCH NOTICES. - ISSN 1073-7928. - STAMPA. - 2022:2(2022), pp. 862-897. [10.1093/imrn/rnaa074]
File in questo prodotto:
File Dimensione Formato  
2022_Multiplicity­_and­_Concentration­_Results­_for­_a­_Magnetic­_Schrödinger­_Equation_pdfeditoriale.pdf

Solo utenti POLIBA

Tipologia: Versione editoriale
Licenza: Tutti i diritti riservati
Dimensione 374.93 kB
Formato Adobe PDF
374.93 kB Adobe PDF   Visualizza/Apri
2022_Multiplicity­_and­_Concentration­_Results­_for­_a­_Magnetic­_Schrödinger­_Equation_preprintArXiv.pdf

accesso aperto

Tipologia: Documento in Pre-print
Licenza: Tutti i diritti riservati
Dimensione 330.92 kB
Formato Adobe PDF
330.92 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11589/174497
Citazioni
  • Scopus 19
  • ???jsp.display-item.citation.isi??? 18
social impact