In this paper we study the following nonlinear Schr"{o}dinger equation with magnetic field [ Big(rac{arepsilon}{i} abla-A(x)Big)^{2}u+V(x)u=f(| u|^{2})u,quad xinmathbb{R}^{2}, ] where $arepsilon>0$ is a parameter, $V:mathbb{R}^{2} ightarrow mathbb{R}$ and $A: mathbb{R}^{2} ightarrow mathbb{R}^{2}$ are continuous potentials and $f:mathbb{R}^{2} ightarrow mathbb{R}$ has exponential critical growth. Under a local assumption on the potential $V$, by variational methods, penalization technique, and Ljusternick-Schnirelmann theory, we prove multiplicity and concentration of solutions for $arepsilon$ small.

Multiplicity and concentration results for a magnetic Schrödinger equation with exponential critical growth in $mathbb{R}^{2}$

d'Avenia, Pietro;
2022-01-01

Abstract

In this paper we study the following nonlinear Schr"{o}dinger equation with magnetic field [ Big(rac{arepsilon}{i} abla-A(x)Big)^{2}u+V(x)u=f(| u|^{2})u,quad xinmathbb{R}^{2}, ] where $arepsilon>0$ is a parameter, $V:mathbb{R}^{2} ightarrow mathbb{R}$ and $A: mathbb{R}^{2} ightarrow mathbb{R}^{2}$ are continuous potentials and $f:mathbb{R}^{2} ightarrow mathbb{R}$ has exponential critical growth. Under a local assumption on the potential $V$, by variational methods, penalization technique, and Ljusternick-Schnirelmann theory, we prove multiplicity and concentration of solutions for $arepsilon$ small.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11589/174497
Citazioni
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 11
social impact