We study linear and quasilinear Venttsel boundary value problems involving elliptic operators with discontinuous coefficients. On the base of the a priori estimates obtained, maximal regularity and strong solvability in Sobolev spaces are proved.

Venttsel boundary value problems with discontinuous data / Apushkinskaya, Darya E.; Nazarov, Alexander I.; Palagachev, Dian K.; Softova, Lubomira G.. - In: SIAM JOURNAL ON MATHEMATICAL ANALYSIS. - ISSN 0036-1410. - STAMPA. - 53:1(2021), pp. 221-252. [10.1137/19M1286839]

Venttsel boundary value problems with discontinuous data

Dian K. Palagachev
;
2021-01-01

Abstract

We study linear and quasilinear Venttsel boundary value problems involving elliptic operators with discontinuous coefficients. On the base of the a priori estimates obtained, maximal regularity and strong solvability in Sobolev spaces are proved.
2021
Venttsel boundary value problems with discontinuous data / Apushkinskaya, Darya E.; Nazarov, Alexander I.; Palagachev, Dian K.; Softova, Lubomira G.. - In: SIAM JOURNAL ON MATHEMATICAL ANALYSIS. - ISSN 0036-1410. - STAMPA. - 53:1(2021), pp. 221-252. [10.1137/19M1286839]
File in questo prodotto:
File Dimensione Formato  
2021_Venttsel_Boundary_Value_Problems_with_Discontinuous_Data_postprint.pdf

accesso aperto

Tipologia: Documento in Post-print
Licenza: Creative commons
Dimensione 494.25 kB
Formato Adobe PDF
494.25 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11589/175693
Citazioni
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 9
social impact