We study linear and quasilinear Venttsel boundary value problems involving elliptic operators with discontinuous coefficients. On the base of the a priori estimates obtained, maximal regularity and strong solvability in Sobolev spaces are proved.
Venttsel boundary value problems with discontinuous data / Apushkinskaya, Darya E.; Nazarov, Alexander I.; Palagachev, Dian K.; Softova, Lubomira G.. - In: SIAM JOURNAL ON MATHEMATICAL ANALYSIS. - ISSN 0036-1410. - STAMPA. - 53:1(2021), pp. 221-252. [10.1137/19M1286839]
Venttsel boundary value problems with discontinuous data
Dian K. Palagachev
;
2021-01-01
Abstract
We study linear and quasilinear Venttsel boundary value problems involving elliptic operators with discontinuous coefficients. On the base of the a priori estimates obtained, maximal regularity and strong solvability in Sobolev spaces are proved.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
2021_Venttsel_Boundary_Value_Problems_with_Discontinuous_Data_postprint.pdf
accesso aperto
Tipologia:
Documento in Post-print
Licenza:
Creative commons
Dimensione
494.25 kB
Formato
Adobe PDF
|
494.25 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.