A new construction of an ovoid O of the Hermitian surface H(3,q2), q>3 odd, is provided. In particular, O is left invariant by a group of order [Formula presented] and it cannot be obtained from a Hermitian curve by means of multiple derivation and it is not locally Hermitian.

Ovoids of H(3,q2), q odd, admitting a group of order (q+1)^3/2 / Pavese, Francesco. - In: DISCRETE MATHEMATICS. - ISSN 0012-365X. - STAMPA. - 341:7(2018), pp. 2089-2094. [10.1016/j.disc.2018.04.013]

Ovoids of H(3,q2), q odd, admitting a group of order (q+1)^3/2

Francesco Pavese
2018-01-01

Abstract

A new construction of an ovoid O of the Hermitian surface H(3,q2), q>3 odd, is provided. In particular, O is left invariant by a group of order [Formula presented] and it cannot be obtained from a Hermitian curve by means of multiple derivation and it is not locally Hermitian.
2018
Ovoids of H(3,q2), q odd, admitting a group of order (q+1)^3/2 / Pavese, Francesco. - In: DISCRETE MATHEMATICS. - ISSN 0012-365X. - STAMPA. - 341:7(2018), pp. 2089-2094. [10.1016/j.disc.2018.04.013]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11589/176867
Citazioni
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact