In this paper we describe an infinite family of Cameron–Liebler line classes of PG(3,q) with parameter (q 2 +1)/2, q≡1(mod4). The example obtained admits PGL(2,q) as an automorphism group and it is shown not to be isomorphic to any of the infinite families known so far whenever q≥9.

Cameron–Liebler line classes of PG(3,q) admitting PGL(2,q) / Cossidente, Antonio; Pavese, Francesco. - In: JOURNAL OF COMBINATORIAL THEORY. SERIES A. - ISSN 0097-3165. - STAMPA. - 167:(2019), pp. 104-120. [10.1016/j.jcta.2019.04.004]

Cameron–Liebler line classes of PG(3,q) admitting PGL(2,q)

Francesco Pavese
2019-01-01

Abstract

In this paper we describe an infinite family of Cameron–Liebler line classes of PG(3,q) with parameter (q 2 +1)/2, q≡1(mod4). The example obtained admits PGL(2,q) as an automorphism group and it is shown not to be isomorphic to any of the infinite families known so far whenever q≥9.
2019
Cameron–Liebler line classes of PG(3,q) admitting PGL(2,q) / Cossidente, Antonio; Pavese, Francesco. - In: JOURNAL OF COMBINATORIAL THEORY. SERIES A. - ISSN 0097-3165. - STAMPA. - 167:(2019), pp. 104-120. [10.1016/j.jcta.2019.04.004]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11589/176890
Citazioni
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 5
social impact