In this paper we describe an infinite family of Cameron–Liebler line classes of PG(3,q) with parameter (q 2 +1)/2, q≡1(mod4). The example obtained admits PGL(2,q) as an automorphism group and it is shown not to be isomorphic to any of the infinite families known so far whenever q≥9.
Cameron–Liebler line classes of PG(3,q) admitting PGL(2,q) / Cossidente, Antonio; Pavese, Francesco. - In: JOURNAL OF COMBINATORIAL THEORY. SERIES A. - ISSN 0097-3165. - STAMPA. - 167:(2019), pp. 104-120. [10.1016/j.jcta.2019.04.004]
Cameron–Liebler line classes of PG(3,q) admitting PGL(2,q)
Francesco Pavese
2019-01-01
Abstract
In this paper we describe an infinite family of Cameron–Liebler line classes of PG(3,q) with parameter (q 2 +1)/2, q≡1(mod4). The example obtained admits PGL(2,q) as an automorphism group and it is shown not to be isomorphic to any of the infinite families known so far whenever q≥9.File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.