This paper proposes a novel architecture of a wearable Field Programmable Gate Array (FPGA)-based platform to dynamically monitor Muscle Fiber Conduction Velocity (MFCV). The system uses a set of wireless sensors for the detection of muscular activation: four surface electromyography electrodes (EMGs) and two footswitches. The beginning of movement (trigger) is set by sensors (footswitches) detecting the feet position. The MFCV value extraction exploits an iterative algorithm, which compares two 1-bit digitized EMG signals. The EMG electrode positioning is ensured by a dedicated procedure. The architecture is implemented on FPGA board (Altera Cyclone V), which manages an external Bluetooth module for data transmission. The time spent for data elaboration is 63.5 ms ± 0.25 ms, matching real-time requirements. The FPGA-based MFCV estimator has been validated during regular walking and in the fatigue monitoring context. Six healthy subjects contributed to experimental validation. In the gait analysis, the subjects showed MFCV evaluation of about 7.6 m/s ± 0.36 m/s, i.e., <0.1 m/s, a typical value for healthy subjects. Furthermore, in agreement with current research methods in the field, in a fatigue evaluation context, the extracted data showed an MFCV descending trend with the increment of the muscular effort time (Rested: MFCV = 8.51 m/s; Tired: 4.60 m/s).
Field programmable gate array-embedded platform for dynamic muscle fiber conduction velocity monitoring / De Venuto, Daniela; Mezzina, Giovanni. - In: SENSORS. - ISSN 1424-8220. - ELETTRONICO. - 19:20(2019). [10.3390/s19204594]
Field programmable gate array-embedded platform for dynamic muscle fiber conduction velocity monitoring
Daniela De Venuto
;Giovanni Mezzina
2019-01-01
Abstract
This paper proposes a novel architecture of a wearable Field Programmable Gate Array (FPGA)-based platform to dynamically monitor Muscle Fiber Conduction Velocity (MFCV). The system uses a set of wireless sensors for the detection of muscular activation: four surface electromyography electrodes (EMGs) and two footswitches. The beginning of movement (trigger) is set by sensors (footswitches) detecting the feet position. The MFCV value extraction exploits an iterative algorithm, which compares two 1-bit digitized EMG signals. The EMG electrode positioning is ensured by a dedicated procedure. The architecture is implemented on FPGA board (Altera Cyclone V), which manages an external Bluetooth module for data transmission. The time spent for data elaboration is 63.5 ms ± 0.25 ms, matching real-time requirements. The FPGA-based MFCV estimator has been validated during regular walking and in the fatigue monitoring context. Six healthy subjects contributed to experimental validation. In the gait analysis, the subjects showed MFCV evaluation of about 7.6 m/s ± 0.36 m/s, i.e., <0.1 m/s, a typical value for healthy subjects. Furthermore, in agreement with current research methods in the field, in a fatigue evaluation context, the extracted data showed an MFCV descending trend with the increment of the muscular effort time (Rested: MFCV = 8.51 m/s; Tired: 4.60 m/s).File | Dimensione | Formato | |
---|---|---|---|
sensors-19-04594 (2).pdf
accesso aperto
Descrizione: Articolo principale
Tipologia:
Versione editoriale
Licenza:
Creative commons
Dimensione
6.87 MB
Formato
Adobe PDF
|
6.87 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.