Aiming at finding a fast and accurate preimpact fall detection (PIFD) strategy, this paper proposes a novel methodology that precociously discriminates the occurrence of unexpected loss of balance from the steady walking, by analyzing the subject’s cortical signal modifications (at the scalp level) in the time-frequency domain. In this study, the subjects were asked to walk at their preferred speed on the treadmill platform programmed to provide unexpected bilateral slippages. The proposed PIFD method exploits synchronously recorded electromyographic (EMG: 2 channels from the same lower limb muscle bundle, bilaterally) and electro-encephalographic (EEG: 13 channels from motor, sensory-motor and parietal cortex areas) signals. To validate the method offline, also, the lower limb kinematics has been reconstructed via a motion capture system (23 reflective markers and 8 fixed cameras). During the PIFD system functioning, the EMG signals from the lateral gastrocnemii are first translated in a binary waveform and then used to trigger the EEG analysis. Once enabled via EMG (every gait cycle), the EEG computation branch extracts and linearizes the rate of variation in the EEG power spectrum density (PSD) for five bands of interests: θ (4-7 Hz), α (8-12 Hz), β I, β II, β III rhythms (13-15 Hz, 16-20 Hz, and 21-28 Hz). The slope of the linearized trend identifies, in this context, the cortical responsiveness parameter. Experimental results from six subjects revealed that the proposed system can distinguish the loss of balance with an overall accuracy of ~96% (average value between sensitivity and specificity). The discrimination process requests, on average, 370.6 ms. This value could be considered suitable for the implementation of countermeasures aimed at restoring the balance of the subject.

Time-frequency linearization of reactive cortical responses for the early detection of balance losses / Mezzina, Giovanni; De Venuto, Daniela. - In: JOURNAL OF SENSORS. - ISSN 1687-725X. - STAMPA. - 2019:(2020). [10.1155/2019/9570748]

Time-frequency linearization of reactive cortical responses for the early detection of balance losses

Giovanni Mezzina;Daniela De Venuto
2020-01-01

Abstract

Aiming at finding a fast and accurate preimpact fall detection (PIFD) strategy, this paper proposes a novel methodology that precociously discriminates the occurrence of unexpected loss of balance from the steady walking, by analyzing the subject’s cortical signal modifications (at the scalp level) in the time-frequency domain. In this study, the subjects were asked to walk at their preferred speed on the treadmill platform programmed to provide unexpected bilateral slippages. The proposed PIFD method exploits synchronously recorded electromyographic (EMG: 2 channels from the same lower limb muscle bundle, bilaterally) and electro-encephalographic (EEG: 13 channels from motor, sensory-motor and parietal cortex areas) signals. To validate the method offline, also, the lower limb kinematics has been reconstructed via a motion capture system (23 reflective markers and 8 fixed cameras). During the PIFD system functioning, the EMG signals from the lateral gastrocnemii are first translated in a binary waveform and then used to trigger the EEG analysis. Once enabled via EMG (every gait cycle), the EEG computation branch extracts and linearizes the rate of variation in the EEG power spectrum density (PSD) for five bands of interests: θ (4-7 Hz), α (8-12 Hz), β I, β II, β III rhythms (13-15 Hz, 16-20 Hz, and 21-28 Hz). The slope of the linearized trend identifies, in this context, the cortical responsiveness parameter. Experimental results from six subjects revealed that the proposed system can distinguish the loss of balance with an overall accuracy of ~96% (average value between sensitivity and specificity). The discrimination process requests, on average, 370.6 ms. This value could be considered suitable for the implementation of countermeasures aimed at restoring the balance of the subject.
2020
Time-frequency linearization of reactive cortical responses for the early detection of balance losses / Mezzina, Giovanni; De Venuto, Daniela. - In: JOURNAL OF SENSORS. - ISSN 1687-725X. - STAMPA. - 2019:(2020). [10.1155/2019/9570748]
File in questo prodotto:
File Dimensione Formato  
9570748(1).pdf

accesso aperto

Descrizione: Articolo principale
Tipologia: Versione editoriale
Licenza: Creative commons
Dimensione 2.06 MB
Formato Adobe PDF
2.06 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11589/190115
Citazioni
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact