Detecting disruptive events, such as earthquakes, using environmental monitoring systems is a particularly promising, but rather challenging, opportunity. The Internet of Things (IoT) can play a significant role in characterizing and predicting seismic events. The present contribution introduces QuakeSense, an open-source earthquake and weather monitoring system. The implemented IoT system is configured as a Long Range (LoRa)based star topology with a fully energy-autonomous sensor node. The system leverages some of the most useful features of two emerging IoT technologies, e.g., LoRa and Message Queue Telemetry Transport (MQTT), and enables the near real-time monitoring of seismic events through a web-based interface. An experimental campaign has been carried out to verify the current consumption and, therefore, the battery lifetime of the sensor node. Moreover, LoRa parameters have been extensively tested as to evaluate performances in several configurations. The obtained results in terms of latency and Packet Delivery Ratio (PDR) demonstrated the reliability of the proposal.

QuakeSense, a LoRa-compliant Earthquake Monitoring Open System

Pietro Boccadoro;Biagio Montaruli;Luigi Alfredo Grieco
2019

Abstract

Detecting disruptive events, such as earthquakes, using environmental monitoring systems is a particularly promising, but rather challenging, opportunity. The Internet of Things (IoT) can play a significant role in characterizing and predicting seismic events. The present contribution introduces QuakeSense, an open-source earthquake and weather monitoring system. The implemented IoT system is configured as a Long Range (LoRa)based star topology with a fully energy-autonomous sensor node. The system leverages some of the most useful features of two emerging IoT technologies, e.g., LoRa and Message Queue Telemetry Transport (MQTT), and enables the near real-time monitoring of seismic events through a web-based interface. An experimental campaign has been carried out to verify the current consumption and, therefore, the battery lifetime of the sensor node. Moreover, LoRa parameters have been extensively tested as to evaluate performances in several configurations. The obtained results in terms of latency and Packet Delivery Ratio (PDR) demonstrated the reliability of the proposal.
23rd IEEE/ACM International Symposium on Distributed Simulation and Real Time Applications, DS-RT 2019
978-1-7281-2923-5
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11589/194073
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • Scopus 12
  • ???jsp.display-item.citation.isi??? 7
social impact