Attenzione: i dati modificati non sono ancora stati salvati. Per confermare inserimenti o cancellazioni di voci è necessario confermare con il tasto SALVA/INSERISCI in fondo alla pagina
POLITECNICO DI BARI - Catalogo dei prodotti della Ricerca
The charge-conjugation and parity-reversal (CP) symmetry of fundamental particles is a symmetry between matter and antimatter. Violation of this CP symmetry was first observed in 19641, and CP violation in the weak interactions of quarks was soon established2. Sakharov proposed3 that CP violation is necessary to explain the observed imbalance of matter and antimatter abundance in the Universe. However, CP violation in quarks is too small to support this explanation. So far, CP violation has not been observed in non-quark elementary particle systems. It has been shown that CP violation in leptons could generate the matter-antimatter disparity through a process called leptogenesis4. Leptonic mixing, which appears in the standard model's charged current interactions5,6, provides a potential source of CP violation through a complex phase δCP, which is required by some theoretical models of leptogenesis7-9. This CP violation can be measured in muon neutrino to electron neutrino oscillations and the corresponding antineutrino oscillations, which are experimentally accessible using accelerator-produced beams as established by the Tokai-to-Kamioka (T2K) and NOvA experiments10,11. Until now, the value of δCP has not been substantially constrained by neutrino oscillation experiments. Here we report a measurement using long-baseline neutrino and antineutrino oscillations observed by the T2K experiment that shows a large increase in the neutrino oscillation probability, excluding values of δCP that result in a large increase in the observed antineutrino oscillation probability at three standard deviations (3σ). The 3σ confidence interval for δCP, which is cyclic and repeats every 2π, is [-3.41, -0.03] for the so-called normal mass ordering and [-2.54, -0.32] for the inverted mass ordering. Our results indicate CP violation in leptons and our method enables sensitive searches for matter-antimatter asymmetry in neutrino oscillations using accelerator-produced neutrino beams. Future measurements with larger datasets will test whether leptonic CP violation is larger than the CP violation in quarks.
Constraint on the matter-antimatter symmetry-violating phase in neutrino oscillations / Abe, K.; Akutsu, R.; Ali, A.; Alt, C.; Andreopoulos, C.; Anthony, L.; Antonova, M.; Aoki, S.; Ariga, A.; Arihara, T.; Asada, Y.; Ashida, Y.; Atkin, E. T.; Awataguchi, Y.; Ban, S.; Barbi, M.; Barker, G. J.; Barr, G.; Barrow, D.; Barry, C.; Batkiewicz-Kwasniak, M.; Beloshapkin, A.; Bench, F.; Berardi, V.; Berkman, S.; Berns, L.; Bhadra, S.; Bienstock, S.; Blondel, A.; Bolognesi, S.; Bourguille, B.; Boyd, S. B.; Brailsford, D.; Bravar, A.; Bravo Berguño, D.; Bronner, C.; Bubak, A.; Buizza Avanzini, M.; Calcutt, J.; Campbell, T.; Cao, S.; Cartwright, S. L.; Catanesi, M. G.; Cervera, A.; Chappell, A.; Checchia, C.; Cherdack, D.; Chikuma, N.; Cicerchia, M.; Christodoulou, G.; Coleman, J.; Collazuol, G.; Cook, L.; Coplowe, D.; Cudd, A.; Dabrowska, A.; De Rosa, G.; Dealtry, T.; Denner, P. F.; Dennis, S. R.; Densham, C.; Di Lodovico, F.; Dokania, N.; Dolan, S.; Doyle, T. A.; Drapier, O.; Dumarchez, J.; Dunne, P.; Eguchi, A.; Eklund, L.; Emery-Schrenk, S.; Ereditato, A.; Fernandez, P.; Feusels, T.; Finch, A. J.; Fiorentini, G. A.; Fiorillo, G.; Francois, C.; Friend, M.; Fujii, Y.; Fujita, R.; Fukuda, D.; Fukuda, R.; Fukuda, Y.; Fusshoeller, K.; Gameil, K.; Giganti, C.; Golan, T.; Gonin, M.; Gorin, A.; Guigue, M.; Hadley, D. R.; Haigh, J. T.; Hamacher-Baumann, P.; Hartz, M.; Hasegawa, T.; Hassani, S.; Hastings, N. C.; Hayashino, T.; Hayato, Y.; Hiramoto, A.; Hogan, M.; Holeczek, J.; Hong Van, N. T.; Iacob, F.; Ichikawa, A. K.; Ikeda, M.; Ishida, T.; Ishii, T.; Ishitsuka, M.; Iwamoto, K.; Izmaylov, A.; Jakkapu, M.; Jamieson, B.; Jenkins, S. J.; Jesús-Valls, C.; Jiang, M.; Johnson, S.; Jonsson, P.; Jung, C. K.; Junjie, X.; Jurj, P. B.; Kabirnezhad, M.; Kaboth, A. C.; Kajita, T.; Kakuno, H.; Kameda, J.; Karlen, D.; Kasetti, S. P.; Kataoka, Y.; Katori, T.; Kato, Y.; Kearns, E.; Khabibullin, M.; Khotjantsev, A.; Kikawa, T.; Kikutani, H.; Kim, H.; Kim, J.; King, S.; Kisiel, J.; Knight, A.; Knox, A.; Kobayashi, T.; Koch, L.; Koga, T.; Konaka, A.; Kormos, L. L.; Koshio, Y.; Kostin, A.; Kowalik, K.; Kubo, H.; Kudenko, Y.; Kukita, N.; Kuribayashi, S.; Kurjata, R.; Kutter, T.; Kuze, M.; Labarga, L.; Lagoda, J.; Lamoureux, M.; Laveder, M.; Lawe, M.; Licciardi, M.; Lindner, T.; Litchfield, R. P.; Liu, S. L.; Li, X.; Longhin, A.; Ludovici, L.; Lu, X.; Lux, T.; Machado, L. N.; Magaletti, L.; Mahn, K.; Malek, M.; Manly, S.; Maret, L.; Marino, A. D.; Marti-Magro, L.; Martin, J. F.; Maruyama, T.; Matsubara, T.; Matsushita, K.; Matveev, V.; Mavrokoridis, K.; Mazzucato, E.; Mccarthy, M.; Mccauley, N.; Mcelwee, J.; Mcfarland, K. S.; Mcgrew, C.; Mefodiev, A.; Metelko, C.; Mezzetto, M.; Minamino, A.; Mineev, O.; Mine, S.; Miura, M.; Molina Bueno, L.; Moriyama, S.; Morrison, J.; Mueller, Th. A.; Munteanu, L.; Murphy, S.; Nagai, Y.; Nakadaira, T.; Nakahata, M.; Nakajima, Y.; Nakamura, A.; Nakamura, K. G.; Nakamura, K.; Nakayama, S.; Nakaya, T.; Nakayoshi, K.; Nantais, C.; Naseby, C. E. R.; Ngoc, T. V.; Niewczas, K.; Nishikawa, K.; Nishimura, Y.; Noah, E.; Nonnenmacher, T. S.; Nova, F.; Novella, P.; Nowak, J.; Nugent, J. C.; O’Keeffe, H. M.; O’Sullivan, L.; Odagawa, T.; Okumura, K.; Okusawa, T.; Oser, S. M.; Owen, R. A.; Oyama, Y.; Palladino, V.; Palomino, J. L.; Paolone, V.; Pari, M.; Parker, W. C.; Parsa, S.; Pasternak, J.; Paudyal, P.; Pavin, M.; Payne, D.; Penn, G. C.; Pickering, L.; Pidcott, C.; Pintaudi, G.; Pinzon Guerra, E. S.; Pistillo, C.; Popov, B.; Porwit, K.; Posiadala-Zezula, M.; Pritchard, A.; Quilain, B.; Radermacher, T.; Radicioni, E.; Radics, B.; Ratoff, P. N.; Reinherz-Aronis, E.; Riccio, C.; Rondio, E.; Roth, S.; Rubbia, A.; Ruggeri, A. C.; Ruggles, C. A.; Rychter, A.; Sakashita, K.; Sánchez, F.; Santucci, G.; Schloesser, C. M.; Scholberg, K.; Schwehr, J.; Scott, M.; Seiya, Y.; Sekiguchi, T.; Sekiya, H.; Sgalaberna, D.; Shah, R.; Shaikhiev, A.; Shaker, F.; Shaykina, A.; Shiozawa, M.; Shorrock, W.; Shvartsman, A.; Smirnov, A.; Smy, M.; Sobczyk, J. T.; Sobel, H.; Soler, F. J. P.; Sonoda, Y.; Steinmann, J.; Suvorov, S.; Suzuki, A.; Suzuki, S. Y.; Suzuki, Y.; Sztuc, A. A.; Tada, M.; Tajima, M.; Takeda, A.; Takeuchi, Y.; Tanaka, H. K.; Tanaka, H. A.; Tanaka, S.; Thompson, L. F.; Toki, W.; Touramanis, C.; Towstego, T.; Tsui, K. M.; Tsukamoto, T.; Tzanov, M.; Uchida, Y.; Uno, W.; Vagins, M.; Valder, S.; Vallari, Z.; Vargas, D.; Vasseur, G.; Vilela, C.; Vinning, W. G. S.; Vladisavljevic, T.; Volkov, V. V.; Wachala, T.; Walker, J.; Walsh, J. G.; Wang, Y.; Wark, D.; Wascko, M. O.; Weber, A.; Wendell, R.; Wilking, M. J.; Wilkinson, C.; Wilson, J. R.; Wilson, R. J.; Wood, K.; Wret, C.; Yamada, Y.; Yamamoto, K.; Yanagisawa, C.; Yang, G.; Yano, T.; Yasutome, K.; Yen, S.; Yershov, N.; Yokoyama, M.; Yoshida, T.; Yu, M.; Zalewska, A.; Zalipska, J.; Zaremba, K.; Zarnecki, G.; Ziembicki, M.; Zimmerman, E. D.; Zito, M.; Zsoldos &, S.; Zykova, A.. - In: NATURE. - ISSN 0028-0836. - STAMPA. - 580:7803(2020), pp. 339-344. [10.1038/s41586-020-2177-0]
Constraint on the matter-antimatter symmetry-violating phase in neutrino oscillations
K. Abe;R. Akutsu;A. Ali;C. Alt;C. Andreopoulos;L. Anthony;M. Antonova;S. Aoki;A. Ariga;T. Arihara;Y. Asada;Y. Ashida;E. T. Atkin;Y. Awataguchi;S. Ban;M. Barbi;G. J. Barker;G. Barr;D. Barrow;C. Barry;M. Batkiewicz-Kwasniak;A. Beloshapkin;F. Bench;V. Berardi;S. Berkman;L. Berns;S. Bhadra;S. Bienstock;A. Blondel;S. Bolognesi;B. Bourguille;S. B. Boyd;D. Brailsford;A. Bravar;D. Bravo Berguño;C. Bronner;A. Bubak;M. Buizza Avanzini;J. Calcutt;T. Campbell;S. Cao;S. L. Cartwright;M. G. Catanesi;A. Cervera;A. Chappell;C. Checchia;D. Cherdack;N. Chikuma;M. Cicerchia;G. Christodoulou;J. Coleman;G. Collazuol;L. Cook;D. Coplowe;A. Cudd;A. Dabrowska;G. De Rosa;T. Dealtry;P. F. Denner;S. R. Dennis;C. Densham;F. Di Lodovico;N. Dokania;S. Dolan;T. A. Doyle;O. Drapier;J. Dumarchez;P. Dunne;A. Eguchi;L. Eklund;S. Emery-Schrenk;A. Ereditato;P. Fernandez;T. Feusels;A. J. Finch;G. A. Fiorentini;G. Fiorillo;C. Francois;M. Friend;Y. Fujii;R. Fujita;D. Fukuda;R. Fukuda;Y. Fukuda;K. Fusshoeller;K. Gameil;C. Giganti;T. Golan;M. Gonin;A. Gorin;M. Guigue;D. R. Hadley;J. T. Haigh;P. Hamacher-Baumann;M. Hartz;T. Hasegawa;S. Hassani;N. C. Hastings;T. Hayashino;Y. Hayato;A. Hiramoto;M. Hogan;J. Holeczek;N. T. Hong Van;F. Iacob;A. K. Ichikawa;M. Ikeda;T. Ishida;T. Ishii;M. Ishitsuka;K. Iwamoto;A. Izmaylov;M. Jakkapu;B. Jamieson;S. J. Jenkins;C. Jesús-Valls;M. Jiang;S. Johnson;P. Jonsson;C. K. Jung;X. Junjie;P. B. Jurj;M. Kabirnezhad;A. C. Kaboth;T. Kajita;H. Kakuno;J. Kameda;D. Karlen;S. P. Kasetti;Y. Kataoka;T. Katori;Y. Kato;E. Kearns;M. Khabibullin;A. Khotjantsev;T. Kikawa;H. Kikutani;H. Kim;J. Kim;S. King;J. Kisiel;A. Knight;A. Knox;T. Kobayashi;L. Koch;T. Koga;A. Konaka;L. L. Kormos;Y. Koshio;A. Kostin;K. Kowalik;H. Kubo;Y. Kudenko;N. Kukita;S. Kuribayashi;R. Kurjata;T. Kutter;M. Kuze;L. Labarga;J. Lagoda;M. Lamoureux;M. Laveder;M. Lawe;M. Licciardi;T. Lindner;R. P. Litchfield;S. L. Liu;X. Li;A. Longhin;L. Ludovici;X. Lu;T. Lux;L. N. Machado;L. Magaletti;K. Mahn;M. Malek;S. Manly;L. Maret;A. D. Marino;L. Marti-Magro;J. F. Martin;T. Maruyama;T. Matsubara;K. Matsushita;V. Matveev;K. Mavrokoridis;E. Mazzucato;M. McCarthy;N. McCauley;J. McElwee;K. S. McFarland;C. McGrew;A. Mefodiev;C. Metelko;M. Mezzetto;A. Minamino;O. Mineev;S. Mine;M. Miura;L. Molina Bueno;S. Moriyama;J. Morrison;Th. A. Mueller;L. Munteanu;S. Murphy;Y. Nagai;T. Nakadaira;M. Nakahata;Y. Nakajima;A. Nakamura;K. G. Nakamura;K. Nakamura;S. Nakayama;T. Nakaya;K. Nakayoshi;C. Nantais;C. E. R. Naseby;T. V. Ngoc;K. Niewczas;K. Nishikawa;Y. Nishimura;E. Noah;T. S. Nonnenmacher;F. Nova;P. Novella;J. Nowak;J. C. Nugent;H. M. O’Keeffe;L. O’Sullivan;T. Odagawa;K. Okumura;T. Okusawa;S. M. Oser;R. A. Owen;Y. Oyama;V. Palladino;J. L. Palomino;V. Paolone;M. Pari;W. C. Parker;S. Parsa;J. Pasternak;P. Paudyal;M. Pavin;D. Payne;G. C. Penn;L. Pickering;C. Pidcott;G. Pintaudi;E. S. Pinzon Guerra;C. Pistillo;B. Popov;K. Porwit;M. Posiadala-Zezula;A. Pritchard;B. Quilain;T. Radermacher;E. Radicioni;B. Radics;P. N. Ratoff;E. Reinherz-Aronis;C. Riccio;E. Rondio;S. Roth;A. Rubbia;A. C. Ruggeri;C. A. Ruggles;A. Rychter;K. Sakashita;F. Sánchez;G. Santucci;C. M. Schloesser;K. Scholberg;J. Schwehr;M. Scott;Y. Seiya;T. Sekiguchi;H. Sekiya;D. Sgalaberna;R. Shah;A. Shaikhiev;F. Shaker;A. Shaykina;M. Shiozawa;W. Shorrock;A. Shvartsman;A. Smirnov;M. Smy;J. T. Sobczyk;H. Sobel;F. J. P. Soler;Y. Sonoda;J. Steinmann;S. Suvorov;A. Suzuki;S. Y. Suzuki;Y. Suzuki;A. A. Sztuc;M. Tada;M. Tajima;A. Takeda;Y. Takeuchi;H. K. Tanaka;H. A. Tanaka;S. Tanaka;L. F. Thompson;W. Toki;C. Touramanis;T. Towstego;K. M. Tsui;T. Tsukamoto;M. Tzanov;Y. Uchida;W. Uno;M. Vagins;S. Valder;Z. Vallari;D. Vargas;G. Vasseur;C. Vilela;W. G. S. Vinning;T. Vladisavljevic;V. V. Volkov;T. Wachala;J. Walker;J. G. Walsh;Y. Wang;D. Wark;M. O. Wascko;A. Weber;R. Wendell;M. J. Wilking;C. Wilkinson;J. R. Wilson;R. J. Wilson;K. Wood;C. Wret;Y. Yamada;K. Yamamoto;C. Yanagisawa;G. Yang;T. Yano;K. Yasutome;S. Yen;N. Yershov;M. Yokoyama;T. Yoshida;M. Yu;A. Zalewska;J. Zalipska;K. Zaremba;G. Zarnecki;M. Ziembicki;E. D. Zimmerman;M. Zito;S. Zsoldos &;A. Zykova
2020-01-01
Abstract
The charge-conjugation and parity-reversal (CP) symmetry of fundamental particles is a symmetry between matter and antimatter. Violation of this CP symmetry was first observed in 19641, and CP violation in the weak interactions of quarks was soon established2. Sakharov proposed3 that CP violation is necessary to explain the observed imbalance of matter and antimatter abundance in the Universe. However, CP violation in quarks is too small to support this explanation. So far, CP violation has not been observed in non-quark elementary particle systems. It has been shown that CP violation in leptons could generate the matter-antimatter disparity through a process called leptogenesis4. Leptonic mixing, which appears in the standard model's charged current interactions5,6, provides a potential source of CP violation through a complex phase δCP, which is required by some theoretical models of leptogenesis7-9. This CP violation can be measured in muon neutrino to electron neutrino oscillations and the corresponding antineutrino oscillations, which are experimentally accessible using accelerator-produced beams as established by the Tokai-to-Kamioka (T2K) and NOvA experiments10,11. Until now, the value of δCP has not been substantially constrained by neutrino oscillation experiments. Here we report a measurement using long-baseline neutrino and antineutrino oscillations observed by the T2K experiment that shows a large increase in the neutrino oscillation probability, excluding values of δCP that result in a large increase in the observed antineutrino oscillation probability at three standard deviations (3σ). The 3σ confidence interval for δCP, which is cyclic and repeats every 2π, is [-3.41, -0.03] for the so-called normal mass ordering and [-2.54, -0.32] for the inverted mass ordering. Our results indicate CP violation in leptons and our method enables sensitive searches for matter-antimatter asymmetry in neutrino oscillations using accelerator-produced neutrino beams. Future measurements with larger datasets will test whether leptonic CP violation is larger than the CP violation in quarks.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11589/195537
Citazioni
370
301
social impact
Conferma cancellazione
Sei sicuro che questo prodotto debba essere cancellato?
simulazione ASN
Il report seguente simula gli indicatori relativi alla propria produzione scientifica in relazione alle soglie ASN 2023-2025 del proprio SC/SSD. Si ricorda che il superamento dei valori soglia (almeno 2 su 3) è requisito necessario ma non sufficiente al conseguimento dell'abilitazione. La simulazione si basa sui dati IRIS e sugli indicatori bibliometrici alla data indicata e non tiene conto di eventuali periodi di congedo obbligatorio, che in sede di domanda ASN danno diritto a incrementi percentuali dei valori. La simulazione può differire dall'esito di un’eventuale domanda ASN sia per errori di catalogazione e/o dati mancanti in IRIS, sia per la variabilità dei dati bibliometrici nel tempo. Si consideri che Anvur calcola i valori degli indicatori all'ultima data utile per la presentazione delle domande.
La presente simulazione è stata realizzata sulla base delle specifiche raccolte sul tavolo ER del Focus Group IRIS coordinato dall’Università di Modena e Reggio Emilia e delle regole riportate nel DM 589/2018 e allegata Tabella A. Cineca, l’Università di Modena e Reggio Emilia e il Focus Group IRIS non si assumono alcuna responsabilità in merito all’uso che il diretto interessato o terzi faranno della simulazione. Si specifica inoltre che la simulazione contiene calcoli effettuati con dati e algoritmi di pubblico dominio e deve quindi essere considerata come un mero ausilio al calcolo svolgibile manualmente o con strumenti equivalenti.