We provide a characterization of the non-singular Hermitian variety of PG(4,q2) as a hypersurface of degree q+1 over GF(q2) with q7+q5+q2+1 rational points, which does not contain linear subspaces of dimension greater than 1 and having exactly one line in common with at least a plane of PG(4,q2).
On non-singular Hermitian varieties of PG(4,q2) / Aguglia, Angela; Pavese, Francesco. - In: DISCRETE MATHEMATICS. - ISSN 0012-365X. - STAMPA. - 343:1(2020), pp. 111634.1-111634.5. [10.1016/j.disc.2019.111634]
On non-singular Hermitian varieties of PG(4,q2)
Angela Aguglia
;Francesco Pavese
2020-01-01
Abstract
We provide a characterization of the non-singular Hermitian variety of PG(4,q2) as a hypersurface of degree q+1 over GF(q2) with q7+q5+q2+1 rational points, which does not contain linear subspaces of dimension greater than 1 and having exactly one line in common with at least a plane of PG(4,q2).File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
2020_On_non-singular_Hermitian_varieties_of_PG(4,q2)_postprint.pdf
accesso aperto
Tipologia:
Documento in Post-print
Licenza:
Tutti i diritti riservati
Dimensione
254.91 kB
Formato
Adobe PDF
|
254.91 kB | Adobe PDF | Visualizza/Apri |
2020_On_non-singular_Hermitian_varieties_of_PG(4,q2)_pdfeditoriale.pdf
solo gestori catalogo
Tipologia:
Versione editoriale
Licenza:
Tutti i diritti riservati
Dimensione
300.44 kB
Formato
Adobe PDF
|
300.44 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.