A q–covering design Cq (n, k, r), k ≥ r, is a collection X of (k − 1)–spaces of PG(n − 1, q) such that every (r − 1)–space of PG(n − 1, q) is contained in at least one element of X. Let Cq (n, k, r) denote the minimum number of (k −1)–spaces in a q–covering design Cq (n, k, r). In this paper improved upper bounds on Cq (2n, 3, 2), n ≥ 4, Cq (3n + 8, 4, 2), n ≥ 0, and Cq (2n, 4, 3), n ≥ 4, are presented. The results are achieved by constructing the related q–covering designs.

On q–covering designs / Pavese, Francesco. - In: ELECTRONIC JOURNAL OF COMBINATORICS. - ISSN 1077-8926. - ELETTRONICO. - 27:1(2020). [10.37236/8718]

On q–covering designs

Pavese, Francesco
2020-01-01

Abstract

A q–covering design Cq (n, k, r), k ≥ r, is a collection X of (k − 1)–spaces of PG(n − 1, q) such that every (r − 1)–space of PG(n − 1, q) is contained in at least one element of X. Let Cq (n, k, r) denote the minimum number of (k −1)–spaces in a q–covering design Cq (n, k, r). In this paper improved upper bounds on Cq (2n, 3, 2), n ≥ 4, Cq (3n + 8, 4, 2), n ≥ 0, and Cq (2n, 4, 3), n ≥ 4, are presented. The results are achieved by constructing the related q–covering designs.
2020
On q–covering designs / Pavese, Francesco. - In: ELECTRONIC JOURNAL OF COMBINATORICS. - ISSN 1077-8926. - ELETTRONICO. - 27:1(2020). [10.37236/8718]
File in questo prodotto:
File Dimensione Formato  
8718-PDF file-31032-1-10-20200129.pdf

accesso aperto

Tipologia: Versione editoriale
Licenza: Tutti i diritti riservati
Dimensione 293.52 kB
Formato Adobe PDF
293.52 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11589/202962
Citazioni
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact