In this work, Discrete Elements Method simulations are carried out to investigate the effective stiffness of an assembly of frictional, elastic spheres under anisotropic loading. Strain probes, following both forward and backward paths, are performed at several anisotropic levels and the corresponding stress is measured. For very small strain perturbations, we retrieve the linear elastic regime where the same response is measured when incremental loading and unloading are applied. Differently, for a greater magnitude of the incremental strain a different stress is measured, depending on the direction of the perturbation. In the case of unloading probes, the behavior stays elastic until non-linearity is reached.Under forward perturbations, the aggregate shows an intermediate inelastic stiffness, in which the main contribution comes from the normal contact forces. That is, when forward incremental probes are applied the behavior of anisotropic aggregates is an incremental frictionless behavior. In this regime we show that contacts roll or slide so the incremental tangential contact forces are zero. Graphical Abstract: [Figure not available: see fulltext.].

DEM simulation of anisotropic granular materials: elastic and inelastic behavior / Recchia, Giuseppina; Magnanimo, Vanessa; Cheng, Hongyang; La Ragione, Luigi. - In: GRANULAR MATTER. - ISSN 1434-5021. - STAMPA. - 22:4(2020). [10.1007/s10035-020-01052-8]

DEM simulation of anisotropic granular materials: elastic and inelastic behavior

Giuseppina Recchia
;
Luigi La Ragione
2020-01-01

Abstract

In this work, Discrete Elements Method simulations are carried out to investigate the effective stiffness of an assembly of frictional, elastic spheres under anisotropic loading. Strain probes, following both forward and backward paths, are performed at several anisotropic levels and the corresponding stress is measured. For very small strain perturbations, we retrieve the linear elastic regime where the same response is measured when incremental loading and unloading are applied. Differently, for a greater magnitude of the incremental strain a different stress is measured, depending on the direction of the perturbation. In the case of unloading probes, the behavior stays elastic until non-linearity is reached.Under forward perturbations, the aggregate shows an intermediate inelastic stiffness, in which the main contribution comes from the normal contact forces. That is, when forward incremental probes are applied the behavior of anisotropic aggregates is an incremental frictionless behavior. In this regime we show that contacts roll or slide so the incremental tangential contact forces are zero. Graphical Abstract: [Figure not available: see fulltext.].
2020
DEM simulation of anisotropic granular materials: elastic and inelastic behavior / Recchia, Giuseppina; Magnanimo, Vanessa; Cheng, Hongyang; La Ragione, Luigi. - In: GRANULAR MATTER. - ISSN 1434-5021. - STAMPA. - 22:4(2020). [10.1007/s10035-020-01052-8]
File in questo prodotto:
File Dimensione Formato  
Recchia2020_Article_DEMSimulationOfAnisotropicGran.pdf

accesso aperto

Tipologia: Versione editoriale
Licenza: Creative commons
Dimensione 1.8 MB
Formato Adobe PDF
1.8 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11589/206019
Citazioni
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 9
social impact