In recent years, the interest in reusing recycled fibers as building materials has been growing as a consequence of their ability to reduce the production of waste and the use of virgin resources, taking advantage of the potential that fibrous materials may offer to improve thermal and acoustic comfort. Composite panels, made of 100% wool waste fibers and bound by means of either a chitosan solution and a gum Arabic solution, were tested and characterized in terms of acoustic and non-acoustic properties. Samples with a 5 cm thickness and different density values were made to investigate the influence of flow resistivity on the final performance. Experimental results demonstrated that the samples had thermal conductivity ranging between 0.049 and 0.060 W/(m K), well comparable to conventional building materials. Similarly, acoustic results were very promising, showing absorption coefficients that, for the given thickness, were generally higher than 0.5 from 500 Hz on, and higher than 0.9 from 1 kHz on. Finally, the effects of the non-acoustic properties and of the air gap behind the samples on the acoustic behavior were also analyzed, proving that the agreement with absorption values predicted by empirical models was also very good.

Composite eco-friendly sound absorbing materials made of recycled textilewaste and biopolymers / Rubino, Chiara; Bonet Aracil, Marilés; Gisbert-Payá, Jaime; Liuzzi, Stefania; Stefanizzi, Pietro; Zamorano Cantó, Manuel; Martellotta, Francesco. - In: MATERIALS. - ISSN 1996-1944. - ELETTRONICO. - 12:23(2019). [10.3390/ma12234020]

Composite eco-friendly sound absorbing materials made of recycled textilewaste and biopolymers

Chiara Rubino;Stefania Liuzzi;Pietro Stefanizzi;Francesco Martellotta
2019-01-01

Abstract

In recent years, the interest in reusing recycled fibers as building materials has been growing as a consequence of their ability to reduce the production of waste and the use of virgin resources, taking advantage of the potential that fibrous materials may offer to improve thermal and acoustic comfort. Composite panels, made of 100% wool waste fibers and bound by means of either a chitosan solution and a gum Arabic solution, were tested and characterized in terms of acoustic and non-acoustic properties. Samples with a 5 cm thickness and different density values were made to investigate the influence of flow resistivity on the final performance. Experimental results demonstrated that the samples had thermal conductivity ranging between 0.049 and 0.060 W/(m K), well comparable to conventional building materials. Similarly, acoustic results were very promising, showing absorption coefficients that, for the given thickness, were generally higher than 0.5 from 500 Hz on, and higher than 0.9 from 1 kHz on. Finally, the effects of the non-acoustic properties and of the air gap behind the samples on the acoustic behavior were also analyzed, proving that the agreement with absorption values predicted by empirical models was also very good.
2019
Composite eco-friendly sound absorbing materials made of recycled textilewaste and biopolymers / Rubino, Chiara; Bonet Aracil, Marilés; Gisbert-Payá, Jaime; Liuzzi, Stefania; Stefanizzi, Pietro; Zamorano Cantó, Manuel; Martellotta, Francesco. - In: MATERIALS. - ISSN 1996-1944. - ELETTRONICO. - 12:23(2019). [10.3390/ma12234020]
File in questo prodotto:
File Dimensione Formato  
materials-12-04020.pdf

accesso aperto

Tipologia: Versione editoriale
Licenza: Creative commons
Dimensione 6.56 MB
Formato Adobe PDF
6.56 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11589/206828
Citazioni
  • Scopus 45
  • ???jsp.display-item.citation.isi??? 41
social impact