Urban stormwater runoff is considered worldwide as one of the most critical diffuse pollutions since it transports contaminants that threaten the quality of receiving water bodies and represent a harm to the aquatic ecosystem. Therefore, a thorough analysis of nutrient build-up and wash-off from impervious surfaces is crucial for effective stormwater-treatment design. In this study, the self-organizing map (SOM) method was used to simplify a complex dataset that contains precipitation, flow rate, and water-quality data, and identify possible patterns among these variables that help to explain the main features that impact the processes of nutrient build-up and wash-off from urban areas. Antecedent dry weather, among the rainfall-related characteristics, and sediment transport resulted in being the most significant factors in nutrient urban runoff simulations. The outcomes of this work will contribute to facilitating informed decision making in the design of management strategies to reduce pollution impacts on receiving waters and, consequently, protect the surrounding ecological environment.
Application of the Self-organizing Map (SOM) to Characterize Nutrient Urban Runoff / Gorgoglione, Angela; Castro, Alberto; Gioia, Andrea; Iacobellis, Vito. - STAMPA. - 12252:(2020), pp. 680-692. (Intervento presentato al convegno 20th International Conference on Computational Science and Its Applications, ICCSA 2020 tenutosi a Cagliari, Italy nel July 1-4, 2020) [10.1007/978-3-030-58811-3_49].
Application of the Self-organizing Map (SOM) to Characterize Nutrient Urban Runoff
Andrea Gioia;Vito Iacobellis
2020-01-01
Abstract
Urban stormwater runoff is considered worldwide as one of the most critical diffuse pollutions since it transports contaminants that threaten the quality of receiving water bodies and represent a harm to the aquatic ecosystem. Therefore, a thorough analysis of nutrient build-up and wash-off from impervious surfaces is crucial for effective stormwater-treatment design. In this study, the self-organizing map (SOM) method was used to simplify a complex dataset that contains precipitation, flow rate, and water-quality data, and identify possible patterns among these variables that help to explain the main features that impact the processes of nutrient build-up and wash-off from urban areas. Antecedent dry weather, among the rainfall-related characteristics, and sediment transport resulted in being the most significant factors in nutrient urban runoff simulations. The outcomes of this work will contribute to facilitating informed decision making in the design of management strategies to reduce pollution impacts on receiving waters and, consequently, protect the surrounding ecological environment.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.