Four Schiff base manganese(III) complexes with derivatives of [(R,R)-N,N’-bis(salicy1idene)-1,2-cyclohexanediaminato)] including substituents on salicylaldehyde such as 3-methoxy, 3,5-di-tert-butyl and 3,5-chloro were synthesized and characterized using a combination of IR, UV–Vis, and HR ESI-MS techniques. The catalytic activity of these complexes was tested in the oxidation of 1-phenylethanol to acetophenone, revealing very good performances for all of the four manganese complexes. The catalytic reactions were carried out in the presence of tert-butyl hydroperoxide (TBHP) as oxidant and imidazole as co-catalyst. Complex Mn-4, bearing electron withdrawing [(R,R)-N,N’-bis(3,5-di-chloro-salicylidene)-1,2-cyclohexanediaminato)] ligand was found to be the most stable of the tested Mn(III) complexes and was selected for the oxidation of several primary and secondary alcohols.
Catalytic alcohol oxidation using cationic Schiff base manganeseIII complexes with flexible diamino bridge / Neshat, A.; Osanlou, F.; Kakavand, M.; Mastrorilli, P.; Schingaro, E.; Mesto, E.; Todisco, S.. - In: POLYHEDRON. - ISSN 0277-5387. - STAMPA. - 193:(2021). [10.1016/j.poly.2020.114873]
Catalytic alcohol oxidation using cationic Schiff base manganeseIII complexes with flexible diamino bridge
Mastrorilli P.;Todisco S.
2021-01-01
Abstract
Four Schiff base manganese(III) complexes with derivatives of [(R,R)-N,N’-bis(salicy1idene)-1,2-cyclohexanediaminato)] including substituents on salicylaldehyde such as 3-methoxy, 3,5-di-tert-butyl and 3,5-chloro were synthesized and characterized using a combination of IR, UV–Vis, and HR ESI-MS techniques. The catalytic activity of these complexes was tested in the oxidation of 1-phenylethanol to acetophenone, revealing very good performances for all of the four manganese complexes. The catalytic reactions were carried out in the presence of tert-butyl hydroperoxide (TBHP) as oxidant and imidazole as co-catalyst. Complex Mn-4, bearing electron withdrawing [(R,R)-N,N’-bis(3,5-di-chloro-salicylidene)-1,2-cyclohexanediaminato)] ligand was found to be the most stable of the tested Mn(III) complexes and was selected for the oxidation of several primary and secondary alcohols.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.