This paper provides an overview of the work done in the ESWC Linked Open Data-enabled Recommender Systems challenge, in which we proposed an ensemble of algorithms based on popularity, Vector Space Model, Random Forests, Logistic Regression, and PageRank, running on a diverse set of semantic features. We ranked 1st in the top-N recommendation task, and 3rd in the tasks of rating prediction and diversity.

CContent-Based Recommender Systems + DBpedia Knowledge = Semantics-Aware Recommender Systems

Fedelucio Narducci;
2014-01-01

Abstract

This paper provides an overview of the work done in the ESWC Linked Open Data-enabled Recommender Systems challenge, in which we proposed an ensemble of algorithms based on popularity, Vector Space Model, Random Forests, Logistic Regression, and PageRank, running on a diverse set of semantic features. We ranked 1st in the top-N recommendation task, and 3rd in the tasks of rating prediction and diversity.
2014
Semantic Web Evaluation Challenge SemWebEval 2014 at ESWC 2014, Anissaras, Crete, Greece, May 25-29, 2014, Revised Selected Papers
978-3-319-12023-2
Springer
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11589/215920
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • Scopus 15
  • ???jsp.display-item.citation.isi??? 10
social impact