We study the periodic motions of a relativistic particle submitted to the action of an external potential $V$. We consider on a wide class of Lorentzian manifolds, timelike solutions of a differential equation depending on $V$ closed in the spatial component and satisfying a Dirichlet condition in the temporal one. We prove a multiplicity result for the critical points of the (strongly indefinite) functional associated to the problem by means of a saddle type theorem based on the notion of relative category. The periodicity of the problem, the non--compactness of the manifold and the fact that some assumptions involving the relative category fail make necessary to use a suitable penalization for the action functional and a Galerkin approximation.

Timelike spatially closed trajectories under a potential on spitting Lorentzian manifolds / Bartolo, R.; Germinario, A.. - In: COMMUNICATIONS IN APPLIED ANALYSIS. - ISSN 1083-2564. - 9:2(2005), pp. 177-205.

Timelike spatially closed trajectories under a potential on spitting Lorentzian manifolds

Bartolo, R.;
2005-01-01

Abstract

We study the periodic motions of a relativistic particle submitted to the action of an external potential $V$. We consider on a wide class of Lorentzian manifolds, timelike solutions of a differential equation depending on $V$ closed in the spatial component and satisfying a Dirichlet condition in the temporal one. We prove a multiplicity result for the critical points of the (strongly indefinite) functional associated to the problem by means of a saddle type theorem based on the notion of relative category. The periodicity of the problem, the non--compactness of the manifold and the fact that some assumptions involving the relative category fail make necessary to use a suitable penalization for the action functional and a Galerkin approximation.
2005
http://www.acadsol.eu/en/articles/9/2/3.pdf
Timelike spatially closed trajectories under a potential on spitting Lorentzian manifolds / Bartolo, R.; Germinario, A.. - In: COMMUNICATIONS IN APPLIED ANALYSIS. - ISSN 1083-2564. - 9:2(2005), pp. 177-205.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11589/2185
Citazioni
  • Scopus 2
  • ???jsp.display-item.citation.isi??? ND
social impact