Acoustic Emission technique has grown tremendously over the last few decades. The growth is owing its sensitivity, which is amply supported by the technical advances and the powerful data processing techniques. The engineers, researchers and academicians around the globe has introduced several different techniques for improving the capability of the acoustic emission technique. However, the controversies regarding the usage of this technique for certain applications, usage of certain parameters for specific processes still prevails. The aim of this research work is to explore the advantages of the acoustic emission technique by studying the state of the art and breaks the barriers which limit the usage of this technique. The applications of acoustic emission in the industrial field such as damage monitoring of large structures and bridges, leakage identifications in pipes and pressure vessels and other industrial applications are extremely successful and its thriving. On the other hand, the application of this technique in damage monitoring at micro levels is limited in comparison. In fact, the research gap between the industrial applications of the acoustic emission technique and the micro level damage monitoring is very wide. As a matter of fact, the introduction of this technique is based on its sensitivity to monitor damages at microscopic level in the structural materials. This research work aims in exploring this technique to its full advantage and use it for monitoring damage modes and characterizing the behaviour of structural materials. In this research work, the state of the art of techniques in this field has been explored. But beyond that, new parameters are also introduced. These novels parameters are based upon one or more different acoustic emission descriptors, which are commonly used. The novel parameters introduced in this research work explore the advantages of their parent descriptors from which they are derived but improve their limitations. Aside from the new parameters, new methodologies are also used for using the acoustic emission technique. These two form the core of the research work. Several structural materials, Carbon Fiber Reinforced Plastic (CFRP) composites, with different geometrical and layup configuration and additively manufactured materials are tested during this research work. The new methodologies used are two: Acousto-Ultrasonic approach, and waveform analysis. The first one is used for assessing the interlaminar fracture strength and the residual strength of CFRP material before and after subjected to a drop-weight impact event. The second methodology used in this research work is a hybrid method of using a wavelet transform and an adaptive transform. The wavelet transform in this work refers to the Wavelet Packet Transform (WPT) and the adaptive transform is the Empirical Mode Decomposition (EMD). This hybrid approach is based on using the advantages of WPT and EMD combinedly, while overcoming their limitations. This hybrid approach is used in analyzing the qualitative damage analysis in the above said CFRP materials. The new parameters used in this research work are b_AE-value and Energy per Count. While both these parameters are based on the acoustic energy and acoustic counts, that are different in many aspects. The b_AE-value is a slope coefficient, which is based on the linear relationship between the cumulative counts and cumulative energy of a series of acoustic events recorded during an entire loading history. This b_AE-value is used for characterizing the material behaviour at different stages of loading. The Energy per Count, on the other hand, is based on the acoustic energy distributed for a single count in an acoustic hit. This is used in two different modes. One, the Energy per Count is directly used for analyzing and identifying the damage modes in CFRP joint specimens which are configured in Single Lap Shear (SLS) configuration. The second mode is using Energy per Count as an identifier for choosing representative waveform from a cluster of acoustic waveforms recorded during the loading history. Then these waveforms are used for identifying the characteristic damage state of the particular stage of loading. Apart from this, the attenuation of the acoustic wave propagation is also studied in different configurations of CFRP specimens. Moreover, the data clustering technique, which uses k-means++ data clustering, is also used for damage identification and mechanical characterizations. All the aforementioned methodologies and parameters are supported by detailed experimental campaigns, which validates their reliability and usage.

Negli ultimi decenni la tecnica delle emissioni acustiche si è evoluta enormemente. La sua crescita è legata essenzialmente alla enorme sensibilità, ampiamente supportata dai progressi tecnici e dalle potenti tecniche di elaborazione dei dati. Ingegneri, ricercatori e accademici di tutto il mondo hanno introdotto diversi approcci per migliorarne le capacità. Tuttavia, prevalgono ancora controversie riguardanti il loro utilizzo e l'utilizzo di alcuni parametri ad esse connessi per processi specifici. Scopo di questa attività di ricerca è quello di esplorare i vantaggi della tecnica delle emissioni acustiche analizzandone lo stato dell'arte e superando i limiti ad esse connessi. L’applicazione delle emissioni acustiche nel settore industriale spazia con enorme successo dal monitoraggio dei danni di grandi strutture e ponti, all’identificazione delle perdite nei tubi e nei recipienti in pressione. Viceversa, la loro applicazione nel monitoraggio dei danni microscopici è ancora molto limitata. Infatti, esiste un ampio divario dal punto di vista della ricerca tra le applicazioni industriali della tecnica e il monitoraggio dei danni a livello microscopico. L'introduzione di questa tecnica sfrutta la sua sensibilità per monitorare i danni tanto a livello microscopico quanto per grandi danneggiamenti nei materiali strutturali. Questo lavoro di ricerca mira ad esplorare questa tecnica in tutti i suoi vantaggi e ad utilizzarla per monitorare i meccanismi di danneggiamento e per caratterizzare in maniera completa il comportamento dei materiali strutturali. Dapprima è stato esplorato lo stato dell'arte in questo campo; successivamente sono stati introdotti anche nuovi parametri. Questi parametri innovativi si basano su uno o più descrittori comunemente utilizzati nelle emissioni acustiche. I nuovi parametri introdotti esplorano i vantaggi dei descrittori/genitori da cui derivano, ma ne superano i limiti. Oltre ai nuovi parametri, sono state introdotte anche nuove metodologie. Queste innovazioni rappresentano il cuore del presente lavoro di ricerca. A tal proposito sono stati testati due diversi materiali strutturali: compositi CFRP (Carbon Fiber Reinforced Plastic) con diverse layup e configurazioni, e materiali ottenuti per tecnica additiva. Sono state utilizzate due nuove metodologie: l'approccio Acousto-Ultrasonico e l’analisi delle forme d’onda. La prima viene utilizzata per valutare la resistenza alla frattura interlaminare e la resistenza residua dei CFRP prima e dopo essere stati sottoposti ad una prova di impatto di tipo drop-test. La seconda metodologia utilizzata è un metodo ibrido che combina una trasformata wavelet con una trasformata adattativa. La trasformata wavelet impiegata in questo lavoro è la Wavelet Packet Transform (WPT) mentre quella adattativa è la Empirical Mode Decomposition (EMD). Questo approccio ibrido sfrutta la combinazione dei vantaggi di WPT ed EMD, superando al contempo i loro limiti. Questo approccio è stato impiegato nell'analisi qualitativa del danneggiamento nei suddetti materiali CFRP. I nuovi parametri utilizzati in questo lavoro di ricerca sono il b_AE-value e l’Energia per Count. Sebbene entrambi questi parametri siano basati sull'energia e sui count acustici, essi sono per molti aspetti diversi da questi ultimi. Il b_(AE )value rappresenta la pendenza della relazione lineare tra i count cumulativi e l'energia cumulativa di una serie di eventi acustici registrati durante un'intera storia di carico. Questo valore b_AE viene utilizzato per caratterizzare il comportamento del materiale nelle diverse fasi di carico. L'Energia per Count, al contrario, si basa sull'energia acustica distribuita per un singolo count in un hit acustico ed è applicata in due diverse modalità: nella prima viene utilizzata direttamente per analizzare e identificare le modalità di danneggiamento nei campioni di giunti CFRP nella configurazione SLS (Single Lap Shear), nella seconda si utilizza per individuare la forma d'onda più rappresentativa di un cluster di forme d'onda acustiche registrate durante l’intera storia di carico. Successivamente queste forme d'onda vengono utilizzate per identificare lo stato di danneggiamento caratteristico in una particolare fase di carico. Nell’analisi dei diversi campioni CFRP, inoltre, è stata studiata l'attenuazione della propagazione delle onde acustiche ed è stata effettuata la caratterizzazione meccanica mediante la tecnica di clustering dei dati, basata sul clustering dei dati k-means. Tutte le metodologie e i parametri suddetti sono supportati da campagne sperimentali dettagliate, che ne convalidano l'affidabilità e l'utilizzo.

Acoustic Emission Methods for Mechanical Characterization and Damage Assessment in Structural Materials: Waveforms, Energy based Parameters and Acousto-Ultrasonic Approach / Paramsamy Nadar Kannan, Vimalathithan. - ELETTRONICO. - (2021). [10.60576/poliba/iris/paramsamy-nadar-kannan-vimalathithan_phd2021]

Acoustic Emission Methods for Mechanical Characterization and Damage Assessment in Structural Materials: Waveforms, Energy based Parameters and Acousto-Ultrasonic Approach

Paramsamy Nadar Kannan, Vimalathithan
2021-01-01

Abstract

Acoustic Emission technique has grown tremendously over the last few decades. The growth is owing its sensitivity, which is amply supported by the technical advances and the powerful data processing techniques. The engineers, researchers and academicians around the globe has introduced several different techniques for improving the capability of the acoustic emission technique. However, the controversies regarding the usage of this technique for certain applications, usage of certain parameters for specific processes still prevails. The aim of this research work is to explore the advantages of the acoustic emission technique by studying the state of the art and breaks the barriers which limit the usage of this technique. The applications of acoustic emission in the industrial field such as damage monitoring of large structures and bridges, leakage identifications in pipes and pressure vessels and other industrial applications are extremely successful and its thriving. On the other hand, the application of this technique in damage monitoring at micro levels is limited in comparison. In fact, the research gap between the industrial applications of the acoustic emission technique and the micro level damage monitoring is very wide. As a matter of fact, the introduction of this technique is based on its sensitivity to monitor damages at microscopic level in the structural materials. This research work aims in exploring this technique to its full advantage and use it for monitoring damage modes and characterizing the behaviour of structural materials. In this research work, the state of the art of techniques in this field has been explored. But beyond that, new parameters are also introduced. These novels parameters are based upon one or more different acoustic emission descriptors, which are commonly used. The novel parameters introduced in this research work explore the advantages of their parent descriptors from which they are derived but improve their limitations. Aside from the new parameters, new methodologies are also used for using the acoustic emission technique. These two form the core of the research work. Several structural materials, Carbon Fiber Reinforced Plastic (CFRP) composites, with different geometrical and layup configuration and additively manufactured materials are tested during this research work. The new methodologies used are two: Acousto-Ultrasonic approach, and waveform analysis. The first one is used for assessing the interlaminar fracture strength and the residual strength of CFRP material before and after subjected to a drop-weight impact event. The second methodology used in this research work is a hybrid method of using a wavelet transform and an adaptive transform. The wavelet transform in this work refers to the Wavelet Packet Transform (WPT) and the adaptive transform is the Empirical Mode Decomposition (EMD). This hybrid approach is based on using the advantages of WPT and EMD combinedly, while overcoming their limitations. This hybrid approach is used in analyzing the qualitative damage analysis in the above said CFRP materials. The new parameters used in this research work are b_AE-value and Energy per Count. While both these parameters are based on the acoustic energy and acoustic counts, that are different in many aspects. The b_AE-value is a slope coefficient, which is based on the linear relationship between the cumulative counts and cumulative energy of a series of acoustic events recorded during an entire loading history. This b_AE-value is used for characterizing the material behaviour at different stages of loading. The Energy per Count, on the other hand, is based on the acoustic energy distributed for a single count in an acoustic hit. This is used in two different modes. One, the Energy per Count is directly used for analyzing and identifying the damage modes in CFRP joint specimens which are configured in Single Lap Shear (SLS) configuration. The second mode is using Energy per Count as an identifier for choosing representative waveform from a cluster of acoustic waveforms recorded during the loading history. Then these waveforms are used for identifying the characteristic damage state of the particular stage of loading. Apart from this, the attenuation of the acoustic wave propagation is also studied in different configurations of CFRP specimens. Moreover, the data clustering technique, which uses k-means++ data clustering, is also used for damage identification and mechanical characterizations. All the aforementioned methodologies and parameters are supported by detailed experimental campaigns, which validates their reliability and usage.
2021
Negli ultimi decenni la tecnica delle emissioni acustiche si è evoluta enormemente. La sua crescita è legata essenzialmente alla enorme sensibilità, ampiamente supportata dai progressi tecnici e dalle potenti tecniche di elaborazione dei dati. Ingegneri, ricercatori e accademici di tutto il mondo hanno introdotto diversi approcci per migliorarne le capacità. Tuttavia, prevalgono ancora controversie riguardanti il loro utilizzo e l'utilizzo di alcuni parametri ad esse connessi per processi specifici. Scopo di questa attività di ricerca è quello di esplorare i vantaggi della tecnica delle emissioni acustiche analizzandone lo stato dell'arte e superando i limiti ad esse connessi. L’applicazione delle emissioni acustiche nel settore industriale spazia con enorme successo dal monitoraggio dei danni di grandi strutture e ponti, all’identificazione delle perdite nei tubi e nei recipienti in pressione. Viceversa, la loro applicazione nel monitoraggio dei danni microscopici è ancora molto limitata. Infatti, esiste un ampio divario dal punto di vista della ricerca tra le applicazioni industriali della tecnica e il monitoraggio dei danni a livello microscopico. L'introduzione di questa tecnica sfrutta la sua sensibilità per monitorare i danni tanto a livello microscopico quanto per grandi danneggiamenti nei materiali strutturali. Questo lavoro di ricerca mira ad esplorare questa tecnica in tutti i suoi vantaggi e ad utilizzarla per monitorare i meccanismi di danneggiamento e per caratterizzare in maniera completa il comportamento dei materiali strutturali. Dapprima è stato esplorato lo stato dell'arte in questo campo; successivamente sono stati introdotti anche nuovi parametri. Questi parametri innovativi si basano su uno o più descrittori comunemente utilizzati nelle emissioni acustiche. I nuovi parametri introdotti esplorano i vantaggi dei descrittori/genitori da cui derivano, ma ne superano i limiti. Oltre ai nuovi parametri, sono state introdotte anche nuove metodologie. Queste innovazioni rappresentano il cuore del presente lavoro di ricerca. A tal proposito sono stati testati due diversi materiali strutturali: compositi CFRP (Carbon Fiber Reinforced Plastic) con diverse layup e configurazioni, e materiali ottenuti per tecnica additiva. Sono state utilizzate due nuove metodologie: l'approccio Acousto-Ultrasonico e l’analisi delle forme d’onda. La prima viene utilizzata per valutare la resistenza alla frattura interlaminare e la resistenza residua dei CFRP prima e dopo essere stati sottoposti ad una prova di impatto di tipo drop-test. La seconda metodologia utilizzata è un metodo ibrido che combina una trasformata wavelet con una trasformata adattativa. La trasformata wavelet impiegata in questo lavoro è la Wavelet Packet Transform (WPT) mentre quella adattativa è la Empirical Mode Decomposition (EMD). Questo approccio ibrido sfrutta la combinazione dei vantaggi di WPT ed EMD, superando al contempo i loro limiti. Questo approccio è stato impiegato nell'analisi qualitativa del danneggiamento nei suddetti materiali CFRP. I nuovi parametri utilizzati in questo lavoro di ricerca sono il b_AE-value e l’Energia per Count. Sebbene entrambi questi parametri siano basati sull'energia e sui count acustici, essi sono per molti aspetti diversi da questi ultimi. Il b_(AE )value rappresenta la pendenza della relazione lineare tra i count cumulativi e l'energia cumulativa di una serie di eventi acustici registrati durante un'intera storia di carico. Questo valore b_AE viene utilizzato per caratterizzare il comportamento del materiale nelle diverse fasi di carico. L'Energia per Count, al contrario, si basa sull'energia acustica distribuita per un singolo count in un hit acustico ed è applicata in due diverse modalità: nella prima viene utilizzata direttamente per analizzare e identificare le modalità di danneggiamento nei campioni di giunti CFRP nella configurazione SLS (Single Lap Shear), nella seconda si utilizza per individuare la forma d'onda più rappresentativa di un cluster di forme d'onda acustiche registrate durante l’intera storia di carico. Successivamente queste forme d'onda vengono utilizzate per identificare lo stato di danneggiamento caratteristico in una particolare fase di carico. Nell’analisi dei diversi campioni CFRP, inoltre, è stata studiata l'attenuazione della propagazione delle onde acustiche ed è stata effettuata la caratterizzazione meccanica mediante la tecnica di clustering dei dati, basata sul clustering dei dati k-means. Tutte le metodologie e i parametri suddetti sono supportati da campagne sperimentali dettagliate, che ne convalidano l'affidabilità e l'utilizzo.
Acoustic Emission; Waveform analysis; Energy based Parameters; data clustering techniques; Structural materials
Emissioni acustiche; Analisi delle forme d'onda; Parametri basati sull'Energia; tecniche di clustering dei dati; Materiali strutturali
Acoustic Emission Methods for Mechanical Characterization and Damage Assessment in Structural Materials: Waveforms, Energy based Parameters and Acousto-Ultrasonic Approach / Paramsamy Nadar Kannan, Vimalathithan. - ELETTRONICO. - (2021). [10.60576/poliba/iris/paramsamy-nadar-kannan-vimalathithan_phd2021]
File in questo prodotto:
File Dimensione Formato  
33 ciclo-PARAMSAMY NADAR KANNAN Vimalathithan.pdf

accesso aperto

Descrizione: Tesi di dottarato
Tipologia: Tesi di dottorato
Licenza: Creative commons
Dimensione 10.33 MB
Formato Adobe PDF
10.33 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11589/225078
Citazioni
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact