We study the discrete-to-continuum variational limit of the antiferromagnetic XY model on the two-dimensional triangular lattice. The system is fully frustrated and displays two families of ground states distinguished by the chirality of the spin field. We compute the Γ -limit of the energy in a regime which detects chirality transitions on one-dimensional interfaces between the two admissible chirality phases.

The antiferromagnetic XY model on the triangular lattice: chirality transitions at the surface scaling / Bach, Annika; Cicalese, Marco; Kreutz, Leonard; Orlando, Gianluca. - In: CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS. - ISSN 0944-2669. - STAMPA. - 60:4(2021). [10.1007/s00526-021-02016-3]

The antiferromagnetic XY model on the triangular lattice: chirality transitions at the surface scaling

Orlando Gianluca
2021-01-01

Abstract

We study the discrete-to-continuum variational limit of the antiferromagnetic XY model on the two-dimensional triangular lattice. The system is fully frustrated and displays two families of ground states distinguished by the chirality of the spin field. We compute the Γ -limit of the energy in a regime which detects chirality transitions on one-dimensional interfaces between the two admissible chirality phases.
2021
The antiferromagnetic XY model on the triangular lattice: chirality transitions at the surface scaling / Bach, Annika; Cicalese, Marco; Kreutz, Leonard; Orlando, Gianluca. - In: CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS. - ISSN 0944-2669. - STAMPA. - 60:4(2021). [10.1007/s00526-021-02016-3]
File in questo prodotto:
File Dimensione Formato  
pubblicazione_10-orlando.pdf

solo gestori catalogo

Tipologia: Versione editoriale
Licenza: Creative commons
Dimensione 996.4 kB
Formato Adobe PDF
996.4 kB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11589/227398
Citazioni
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 8
social impact