The equivalence problem of Fq-linear sets of rank n of PG(1,q^n) is investigated, also in terms of the associated variety, projecting configurations, Fq-linear blocking sets of Rédei type and MRD-codes. We call an Fq-linear set L_U of rank n in PG(W,Fq^n)=PG(1,q^n) simple if for any n-dimensional Fq-subspace V of W, L_V is PΓL(2,q^n)-equivalent to L_U only when U and V lie on the same orbit of ΓL(2,q^n). We prove that U={(x,Tr_{q^n/q}(x)):x∈Fq^n} defines a simple Fq-linear set for each n. We provide examples of non-simple linear sets not of pseudoregulus type for n>4 and we prove that all Fq-linear sets of rank 4 are simple in PG(1,q^4).

Classes and equivalence of linear sets in PG(1,q^n) / Csajbok, Bence; Giuseppe, Marino; Olga, Polverino. - In: JOURNAL OF COMBINATORIAL THEORY. SERIES A. - ISSN 0097-3165. - STAMPA. - 157:(2018), pp. 402-426. [10.1016/j.jcta.2018.03.007]

Classes and equivalence of linear sets in PG(1,q^n)

Bence Csajbók;
2018-01-01

Abstract

The equivalence problem of Fq-linear sets of rank n of PG(1,q^n) is investigated, also in terms of the associated variety, projecting configurations, Fq-linear blocking sets of Rédei type and MRD-codes. We call an Fq-linear set L_U of rank n in PG(W,Fq^n)=PG(1,q^n) simple if for any n-dimensional Fq-subspace V of W, L_V is PΓL(2,q^n)-equivalent to L_U only when U and V lie on the same orbit of ΓL(2,q^n). We prove that U={(x,Tr_{q^n/q}(x)):x∈Fq^n} defines a simple Fq-linear set for each n. We provide examples of non-simple linear sets not of pseudoregulus type for n>4 and we prove that all Fq-linear sets of rank 4 are simple in PG(1,q^4).
2018
Classes and equivalence of linear sets in PG(1,q^n) / Csajbok, Bence; Giuseppe, Marino; Olga, Polverino. - In: JOURNAL OF COMBINATORIAL THEORY. SERIES A. - ISSN 0097-3165. - STAMPA. - 157:(2018), pp. 402-426. [10.1016/j.jcta.2018.03.007]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11589/234043
Citazioni
  • Scopus 47
  • ???jsp.display-item.citation.isi??? 41
social impact