We present a rigorous security analysis of continuous-variable measurement-device-independent quantum key distribution (CV MDI QKD) in a finite-size scenario. The security proof is obtained in two steps: by first assessing the security against collective Gaussian attacks, and then extending to the most general class of coherent attacks via the Gaussian de Finetti reduction. Our result combines recent state-of-the-art security proofs for CV QKD with findings about min-entropy calculus and parameter estimation. In doing so, we improve the finite-size estimate of the secret key rate. Our conclusions confirm that CV MDI protocols allow for high rates on the metropolitan scale, and may achieve a nonzero secret key rate against the most general class of coherent attacks after 10^7–10^9 quantum signal transmissions, depending on loss and noise, and on the required level of security.
Continuous-variable measurement-device-independent quantum key distribution: Composable security against coherent attacks / Lupo, C.; Ottaviani, C.; Papanastasiou, P.; Pirandola, S.. - In: PHYSICAL REVIEW A. - ISSN 2469-9926. - 97:5(2018). [10.1103/PhysRevA.97.052327]
Continuous-variable measurement-device-independent quantum key distribution: Composable security against coherent attacks
C. Lupo;
2018-01-01
Abstract
We present a rigorous security analysis of continuous-variable measurement-device-independent quantum key distribution (CV MDI QKD) in a finite-size scenario. The security proof is obtained in two steps: by first assessing the security against collective Gaussian attacks, and then extending to the most general class of coherent attacks via the Gaussian de Finetti reduction. Our result combines recent state-of-the-art security proofs for CV QKD with findings about min-entropy calculus and parameter estimation. In doing so, we improve the finite-size estimate of the secret key rate. Our conclusions confirm that CV MDI protocols allow for high rates on the metropolitan scale, and may achieve a nonzero secret key rate against the most general class of coherent attacks after 10^7–10^9 quantum signal transmissions, depending on loss and noise, and on the required level of security.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.