In this paper we study the nonlinear Schrödinger-Maxwell equations{(- Δ u + V (x) u + φ{symbol} u = | u |p - 1 u, in R3,; - Δ φ{symbol} = u2, in R3 .) If V is a positive constant, we prove the existence of a ground state solution (u, φ{symbol}) for 2 < p < 5. The non-constant potential case is treated for 3 < p < 5, and V possibly unbounded below. Existence and nonexistence results are proved also when the nonlinearity exhibits a critical growth.

Ground state solutions for the nonlinear Schrödinger-Maxwell equations / Azzollini, A.; Pomponio, Alessio. - In: JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS. - ISSN 0022-247X. - 345:1(2008), pp. 90-108. [10.1016/j.jmaa.2008.03.057]

Ground state solutions for the nonlinear Schrödinger-Maxwell equations

POMPONIO, Alessio
2008-01-01

Abstract

In this paper we study the nonlinear Schrödinger-Maxwell equations{(- Δ u + V (x) u + φ{symbol} u = | u |p - 1 u, in R3,; - Δ φ{symbol} = u2, in R3 .) If V is a positive constant, we prove the existence of a ground state solution (u, φ{symbol}) for 2 < p < 5. The non-constant potential case is treated for 3 < p < 5, and V possibly unbounded below. Existence and nonexistence results are proved also when the nonlinearity exhibits a critical growth.
2008
Ground state solutions for the nonlinear Schrödinger-Maxwell equations / Azzollini, A.; Pomponio, Alessio. - In: JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS. - ISSN 0022-247X. - 345:1(2008), pp. 90-108. [10.1016/j.jmaa.2008.03.057]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11589/2395
Citazioni
  • Scopus 426
  • ???jsp.display-item.citation.isi??? 414
social impact